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Introduction
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• Cosmic energy density 
of the Universe (optical-
mm). 

• Sub-mm background
• high-z galaxies
• young universe
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“A unique scientific opportunity”

– Region encompasses the peak of emission from the 
high-z universe and of the dusty progenitors of stars

– Less than 1% of the far-IR/submm sky has been 
studied in any detail – it’s largely unexplored territory! 

– Potentially a huge void between the capabilities of 
existing facilities and the new generation 
interferometers

Scientific motivation
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• Huge revolution over the past decade – very limited access to
this region of the spectrum before

• SCUBA on JCMT played a large role:
Built at UK ATC in Edinburgh
Produced similar advances that occurred in IR astronomy 

in the 1980’s
At the peak of its productivity had a citation rate to rival 

that of the Hubble Space Telescope

The Submm Revolution
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SCUBA on the JCMT 

• One of the first imaging 
“arrays” for the submm

• 128 bolometers in two arrays

• Operated at 350/450 and 
750/850μm

• Came into service in 1997

• Made a number of seminal 
discoveries

• Retired from service in 2005
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Beyond SCUBA

UKT14
1986-1996
1 pixel

SCUBA
1997-2005
128 pixels

• Instruments limited by small number of pixels
• Gone from 1 pixel to 100s in a decade – need more!

• Detector development in relative infancy
• No big military or commercial applications (as yet…)
• Detectors not available “off-the-shelf” so have to make
your own…

SCUBA-2
2008+
10240 pixels
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Motivation for SCUBA-2

• Instruments have 
tended to be limited 
with only a few 
hundred pixels at best

• Sensitivity has been 
poor requiring many 
tens of hours 
integration to reach 
depths of interest 
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SCUBA-2

UKT14
1986-1996
1 pixel

SCUBA
1997-2005
128 pixels

SCUBA-2
2007+
10240 pixels

Bolometer instruments on the JCMT – image 
scaled by number of pixels
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• Deep imaging
Improved detector sensitivity

• Maximise the survey potential
Large field-of-view

• Improved image fidelity
Fully-sampled image planes; no sky chopping

• Imaging at two colours simultaneously
Two separate focal planes

Scientific requirements
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• A wide-field imaging camera with up to 1000× the 
mapping capability of SCUBA

• Capable of carrying out large-scale surveys of the 
submillimeter sky

• Polarimetry and medium resolution spectroscopy 
also available 

• Ultra-deep imaging to the (extragalactic) confusion 
limit

Abilities
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Abilities
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• Ultra-deep imaging 
and exploiting the 
higher angular 
resolution available at 
shorter submm 
wavelengths

• Polarimetry and 
medium resolution 
spectroscopy also 
available 

Emission from high-z galaxies and cold cloud 
cores peaks in the far-IR/submm. 

SCUBA-2 will have the sensitivity to accurately 
determine the fluxes of these faint objects.
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Mapping Speed
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Instrument
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1K enclosure

Optics box

Optical beam

Dilution refrigerator
insert

1K enclosure

Optics box

Optical beam

Dilution refrigerator
insert

Key challenges

• New format arrays with 1000’s 
of pixels

• Low-temperature thermal 
design

• Liquid-cryogen free operation

• Stray light control

• Magnetic shielding of readout 
circuitry

• Cooling 300 kg of optics to 4K

• Large number of signal cables 
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Cryogenic systems
• Novel liquid cryogen-free Leiden
Cryogenics dilution refrigerator 
(first commercial dry DR?)

• Cooling power of ~100μW at 
50mK – sufficient (with some 
margin) to cool all sub-arrays

• Also cools the 100 kg 1K box

• Uses a Cryomech pulse tube 
cooler and Joule-Thompson heat 
exchanger

• Two further PTC’s keep optics 
box and radiation shields at 
temperature

Dilution 
refrigerator 
insert
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45mm

Shielded SQUID
Series arrays

Sub-array

Niobium flex
cables

Detector unit with one 
prototype array installed

Fully populated 
detector unit

Folded sub-array 
module

1 K

60mK

Sub-array module
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Focal plane units
•Four sub-arrays fit 
together in one of two focal 
plane units

60 mK
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Focal planes

450μm prototype sub-array mounted in focal plane unit

• Two independent focal 
planes

• 5120 pixels in each focal 
plane

• Each focal plane 
consists of 4 sub-arrays 
of 1280 pixels each
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Focal plane layout
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Focal plane unit

Focal plane unit

Dichroic cassette

Cold stop 
assembly

1K enclosure (“1K box”)
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Size
• Instrument size driven by need to cool 
large mirrors to below 10 K (to reduce 
thermal background on arrays)
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Installing the mirrors
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Installing the optics box
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Radiation shields
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Vacuum vessel
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Packed on a (big) truck…
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From the ROE to the JAC



29

Onto the telescope…
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SCUBA-2 on JCMT
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Status
• Now installed on telescope

• Behaviour similar to in when Edinburgh
• Survived the air and sea journey
• Fridge running stably at 58 mK
• Operates well in telescope environment

• No interference between SCUBA-2 and other 
JCMT instrumentation seen

• Currently installed: two “commissioning grade”
arrays (one 450 µm, one 850 µm)
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Status
• Optical alignment carried out

• better than 1 mm (double pass from reciever 
cabin to cryostat and back - 21 m!)

• Interference (noise) between SCUBA-2 arrays seen
• Removed by running readouts in sync

• First light any day now
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Detectors
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Detectors
• Most sensitive detection method is to use bolometers

• Measure temperature rise due to absorbed radiation
• Respond to wide wavelength range – define with filters

• Traditionally use NTD germanium thermistors
• BUT: not background limited for best telescopes
• Hard to make large arrays:

• Ge chips have to be individually mounted on each pixel
• Can’t multiplex without prohibitive noise penalty
• Separate wiring and read-out electronics for each pixel 
required

SCUBA individual pixel SCUBA focal plane
SPIRE array – multiple pixels 
on one silicon wafer
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Detector arrays

• Superconducting 
TES detector 
arrays

• Two independent 
focal planes

• 5120 pixels in 
each focal plane

• Detectors cooled 
to 100mK to 
make them ultra 
sensitive

• Construction: 
NIST/SMC
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Multiplexing
• Previous (much smaller) TES arrays have had separate 
detector and SQUID multiplexer chips
• Instead, use new compact configuration: in-focal-plane 
(TDM) multiplexer

• MUX wafer is bonded to detector wafer
• Indium bump bonds provide electrical connections

Active SQUID

Dummy SQUID

Summing coil 
gradiometer

Input
transformer

A full-sized (40 × 32 pixel) multiplexer wafer

~1mm
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Active SQUID

Dummy SQUID

Summing coil 
gradiometer

Input
transformer

~1mm

In-focal plane multiplexing

Pixel scale Array scale
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First, a bit of history:

• We started with “engineering” readout system from NIST
• Locking pixels time consuming

• (Read through three stage SQUID system)

• Worked with 8-16 pixels at a time on prototype array

Measurements
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Measurements

• SPIE 2006 Orlando:
• Commissioning grade array

• MCE now available, but no 
automatic locking

• All pixels read out 
simultaneously using 
multiplexer
• Shown here responding 
to modulation of detector 
bias (6 columns, 12 pixels 
in each row)
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Measurements

• Load curves 
• Current vs bias
• Power vs bias
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Measurements

Agreement with no
calibration factor
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MCE

Data acquisition
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Full array measurements

• IRMMW 2007 Cardiff
• Now automatically 

sets up and reads out 
whole sub-array of 
1280 pixels
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Measurements

• Now
• Improved 
(better behaved) 
array design
• Load curves 
across 850 µm 
array (taken on 
telescope)
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Measurements
Detector current
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Measurements
Detector resistance
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Measurements
Detector power
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Measurements

• Constant total power 
as heater power 
changed
• Total power varies 
with Tc (15 mK)
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Measurements

• We can obtain and model VIs across full 
array
• (Almost) all pixels behave as expected
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Detector status
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Array yields

• Currently have 2 commissioning-grade arrays - one for each 
waveband

• These are limited in terms of pixel yield, and for the 850, the
sensitivity is not background limited

• But good enough to commission the instrument on the 
telescope

• Instrument will be upgraded with science-grade arrays next 
year
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Array yields
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Array yields

850µm C-G array:

• Fails the sensitivity specification by at least a factor of 2 (Tc 
and G too high)

• A trade-off has to be made in terms of the number of pixels 
and their sensitivity

• If adopt a scenario where the cut-off sensitivity is defined 
as being equivalent to that of SCUBA(-1) then 200 pixels 
would be useable 

Provides mapping speed ~5 times better than SCUBA
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Array yields

450µm C-G array:

• As measured some 40% of pixels meet the sensitivity (NEP) 
requirement

• Fails bad pixel distribution criteria (not a S-G array…)

• Should provide mapping speed ~50 times better than 
SCUBA (with 40% of pixels)
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Array yield

Causes of low yield:

• Wire bond failures: 
• Cause loss of entire row or column

• Programme to improve this on the way
• Already seen large improvement over original design

• Failures on MUX 
• All 8 science grade MUXes screened
• Yield from > 85% to near 100%

• (One array has one bad pixel)
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Array yield

Cause of low yield:

• Excess heating
• Small number of resistive joints in wiring in sub-array 
module

• Have to turn off some columns to keep arrays cold 
enough

• Alternative cold electronics design being tested
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Other issues

• Controlling Tc
• MUX process control issue
• Improved process: witness samples show < 2.5 mK 
variation across array
• Acceptable for science-grade array

• Controlling G
• Detector wafer process control issue
• Work on controlling process in hand to replicate 
earlier good results
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Conclusions
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Conclusions
• SCUBA-2 is the first wide-field, ultra-sensitive 
camera for submm astronomy 

• The technology is state-of-the-art and represents a 
great investment on behalf of the funding agencies

• Now installed on JCMT

• First light imminent
• Full complement of science grade arrays early 
2009.
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We’ve come a long way…

• There is still work 
to be done, but we 
are nearly there!

• Science grade 
arrays on their way…

• Watch this space!
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Institutions
Instrument design, construction, testing, 
commissioning: ATC, Edinburgh
Multiplexer and TES devices: NIST, 
Boulder
Detector micromachining: University of 
Edinburgh
“1-K box” design and construction, 
detector test programme, filters/dichroic: 
Cardiff University
Warm electronics: University of British 
Columbia, MUX testing, University of 
Waterloo
Telescope infrastructure: Joint Astronomy 
Centre, Hawaii


