

Direct detectors for low background far infrared space telescopes

Adam Woodcraft SUPA Institute for Astronomy, University of Edinburgh http://woodcraft.lowtemp.org/

FIRI workshop Obergurgl 25-27 October 2006

Detectors

Detector types

- Current direct detector types for FIR astronomy arrays:
 - Photoconductors
 - Limited to λ <200 μ m
 - \bullet Require mechanical stress to reach 200 μm
 - "Gap" between 37 and 52 μm
 - Reach NEP ~ 2 x 10^{-18} at best (doped Germanium)
 - Hard to reach this in space environment
 - Bolometers
 - NTD Germanium
 - High impedance Si detectors
 - Superconducting detectors (TES)

- The problem
- Current state of the art arrays are:
 - Too noisy
 - Too small
 - (And not ready for space)

- Si high impedance detector arrays
 - "CCD" like arrays
 - Currently best NEP ~ 2 x 10^{-16} W/Hz^{-1/2}
 - 16x16 (256) pixel arrays
 - Best predicted results: ~ 7 x 10⁻¹⁷ W/Hz^{-1/2}
 - Not good enough for FIRI!

• NTD Germanium

- As used in SCUBA, Bolocam, Herschel/SPIRE
- Can't multiplex with acceptable noise performance
 - So need separate readout chain for each detector
 - Limits practical array sizes to a few hundred pixels

SCUBA focal plane

Bolometer wafer (JPL)

- TES arrays
 - SCUBA-2 made up of 32x40 (sub)arrays
 - Can we make them bigger?
 - Probably, but huge increases not practical
 - Too many wires
 - Too much heat
 - In principle we could have built 5000 pixel arrays for SCUBA-2 out of SCUBA pixels...

SCUBA-2 sub-array (SCUBA array inset)

- TES arrays
 - Measured optical NEP of SCUBA-2 prototype array:
 - 2.5 x 10⁻¹⁷ W/Hz^{-1/2}
 - Background limited for JCMT
 - But not good enough for FIRI
 - Need ~ 10^{-19} or 10^{-20} W/Hz^{-1/2}

SCUBA-2 detector units

Improvements

- How can we do better?
 - Lowering transition temperature and decreasing thermal conductance (G) helps
 - BUT: can only lower T_c so far (limit to how cold you can get the detectors)
 - Decreasing G is hard to do while still providing adequate mechanical support
 - Run into physical limits: ballistic phonon flow
 - G no longer depends on leg length

Improvements

• Need to do things like this:

٠JPL

- NEP 4 x 10^{-19} W Hz^{-.5}, predict can improve to 5 x 10^{-20} W Hz^{.5}
- (Kenyon et al, Proc. SPIE 6275 627508)

- SRON/Cardiff
 Preliminary results: predict
 NEP 6 x 10⁻¹⁹ W Hz^{-.5},
- (Mauskopf et al, Proc. IRMMW
 2006)

Improvements

• Or:

 hot electron bolometer – very low G caused by electronphoton decoupling

- Also very low specific heat (just that of electron gas)
- NEP ~ 3 x 10⁻¹⁹ claimed (Olaya et al, Proc. SPIE 6275, 627506)

Saturation problem

- If background is too high, TES will just stop working (driven above superconducting transition)
 - Different to semiconductor detectors which just degrade in performance gracefully
 - Less than ideal for space mission
- How to get round this?
 - Heat switch (or variable G) link (integrating bolometer)
 - Double Tc bolometer
 - Throw away photons (filter wheel...)

Multiplexing

- And even if you decide you are going to use a TES array, you have another decision to make:
 - Frequency division or time division
 - Jury still seems to be out on this one

Alternatives - STJ

- Superconducting tunnel junction detectors
 - Photoconductors using superconducting energy gap (much smaller than in semiconductors)
 - VERY hard to make arrays

Alternatives - KIDs

- Kinetic Inductance Detectors
 - Like STJs, make use of small energy gap in superconductor
 - Photons absorbed in superconductor produce excitations which change kinetic inductance
 - Very promising
 - Theoretical NEP ~ 10^{-20} W Hz⁻²⁰
 - Should be able to multiplex large numbers (1000?) of pixels with one readout
 - Multiplexing done at room temperature (cell phone ICs!)
 - Performance degrades with optical loading more gracefully than TESs

• Fewer fabrication steps, don't require highly complex multiplexer

Alternatives - KIDs

- BUT:
 - Currently immature
 - How long will it take to reach fundamental noise limits?
 - (Took a while for TESs)
 - CAN we reach fundamental noise limits?

Other possibilities

- Hot-spot superconducting detectors
- Quantum dot devices
- QWIPs (quantum wells)
- SQPT photoconductor
- Cold Electron Bolometers + quasiparticle amplifier
- Something nobody has thought of yet?
 - (Or haven't thought of using for astronomy?)

Summary

- Summary of the last 15 slides:
- There are lots of choices that *might* be able to produce suitable detectors
- But which one *will*?

Cooling

- Whatever detector technology is chosen, likely to need cooling to at least 300 mK, possibly much lower
 - SCUBA-2 detectors need ~ 60 mK heat sinks
- How do we do this in space?

4-K

- Presumably start with 2 or 4 K platform
 - Traditionally large bucket of helium
 - e.g. IRAS, ISO, Herschel
 - More likely to use cryo-coolers
 - Existing space heritage
 - HFI has mechanical coolers to 4 K
 - Will be used for JWST
 - Development needed,
 - BUT: suitable coolers likely to be available in time
 - Not our biggest problem

300 mK

- 300 mK is reasonably easy
 - Sorption ³He fridge
 - Used successfully on IRTS (1995)
 - Will be used for SPIRE and PACS on Herschel

100 mK

- This is harder
 - Planck dilution fridge (A Benoit and S Pujol)
 - No space heritage, but works upside down on Earth
 - Ran on balloon mission (Archeops)
 - Very low cooling power (few hundred nW at 100 mK)
 - Requires large quantities of ³He and ⁴He (thrown away continuously)
 - When this runs out: end of mission
 - ³He is a limited resource
 - (Not enough H bombs)

100 mK and below

- Sorption fridge?
 - Recently constructed at Cardiff University
 - Will be used (on the ground) for Clover
 - Requires gravity, but a microgravity version is conceivable

Cardiff University

ADR

- Alternatively, could use magnetic cooling
- No cryogens required (nothing to run out, or leak, no capillaries to plug...)
- Large magnetic fields (not nice for TES detectors; need (heavy?) shielding)
- Traditionally single shot, but continuous ADRs of various designs now being developed (Goddard, Wisconsin)
 - Operated down to 35 mK; 20 mK is possible)
- (Brief) space heritage:
 - Flew on XRS on ASTRO-E2
 - Operated successfully in the few days before the helium was lost

Combinations

- Mini ADR with ³He or ⁴He fridge?
 - (Wisconsin, ESI group)

Figure 8 - Conceptual layout of a hybrid ADR - Sorption Cooler system suitable for ESI.

Griffin et al, Proc. SPIE 6275, 62750E

Cryogenic system

• Will have to transfer heat from detectors to coolers, and from coolers to higher temperature stages

- It's not likely to be straightforward
 - SPIRE, PACS and HFI have complex cryogenic systems
 - SCUBA-2 is maybe more representative
 - Very complex cryogenic system
 - Meets specs, but only at the expense of a lot of hard work on design and plenty of overengineering
- Cryogenic system HAS to work
 - Almost certainly won't be able to entirely use existing measurements and methods

• Some R&D almost certainly required (as with SPIRE, HFI, SCUBA-2)

Summary

- Detectors are a problem!
 - What we need doesn't currently exist
 - It's not even clear which of many direction we should be going in
- Cooling detectors won't be easy either
- Likely cooling solutions *do* exist
 - Have to choose from many options, and develop full cryogenic system around them

 Detectors and detector cooling are key issues for making FIRI plausible