COMMON-USFR

ARRAY - 2

SCUBA-2: a 10 000-pixel submillimetre camera for astronomy

Talk given at the 32nd International Conference on Infrared and Millimetre waves, Cardiff, 5th September, 2007

> Adam Woodcraft On behalf of the SCUBA-2 consortium http://woodcraft.lowtemp.org SUPA, University of Edinburgh/ATC

Science & Technology Facilities Council UK Astronomy Technology Centre

Scottish Universities Physics Alliance

COMMON-USER

ARRAY - 2

Background

Science & Technology Facilities Council UK Astronomy Technology Centre

SCUBA

Scottish Universities Physics Alliance

Sub-mm astronomy

- Sub-mm astronomy: wavelengths of a few hundred µm
 - Typically in "windows" around 450 and 850 μm (670 and 350 GHz) atmosphere is largely opaque
- Lets us see cold things: peak in 10-K blackbody around 300µm
 e.g. objects in formation (stars, planets, galaxies...)
- Also lets us see far away (red shifted) warmer objects: peak in 40 K blackbody at red shift Z=3 is at 300 µm
- Sub-mm emission usually "optically thin"; so we see the interior rather than just the surface of objects

The Submm Revolution

Scottish Universities Physics Alliance

 Huge revolution over the past decade – very limited access to this region of the spectrum before

• SCUBA(1) on JCMT has been largely responsible for this:

Built at UK ATC in Edinburgh

 At the peak of its productivity had a citation rate to rival that of the Hubble Space Telescope
 Operated 1997-2005

Beyond SCUBA

- Instruments limited by small number of pixels
 - Gone from 1 pixel to 100s in a decade need more!
 - Less than 1% of the FIR/submm sky studied in any detail
- BUT: Detector development in relative infancy
- No big military or commercial applications (as yet...)
- Detectors not available commercially

UKT14 1986-1996 1 pixel

SCUBA 1997-2005 128 pixels

SCUBA-2 2007+ 10240 pixels

Detectors

- Most sensitive detection method is to use bolometers
 - Measure temperature rise due to absorbed radiation
 - Respond to wide wavelength range define with filters
- Traditionally use NTD germanium thermistors
 - BUT: not background limited for best telescopes
 - Hard to make large arrays:
 - Ge chips have to be individually mounted on each pixel
 - Can't multiplex without prohibitive noise penalty
 - Separate wiring and read-out electronics for each pixel required

SCUBA focal plane

SPIRE array – multiple pixels on one silicon wafer

Solution

- Sensitive (resistive) bolometer requires large dR/dT
- Very large dR/dT through superconducting transition
 Basis of TES (transition edge sensor), operated in superconducting transition
- Other advantages:

- TES sensors can be deposited on silicon wafer:
 - Entire array can be constructed with no operations at the level of a single pixel
- Detectors can be multiplexed with good performance

SCUBA-2 detectors

- Simultaneous dual colour imaging (450 and 850 µm)
- Each focal plane made up of four 1280 pixel sub-arrays
- Pixels use Mo/Cu bi-layer superconductors
 - Weak thermal link provided by silicon nitride membrane

SCUBA-2 sub-array (SCUBA array inset)

Multiplexing

- Previous (much smaller) TES arrays have had separate detector and SQUID multiplexer chips
- Instead, use new compact configuration: in-focal-plane (TDM) multiplexer
 - MUX wafer is bonded to detector wafer
 - Indium bump bonds provide electrical connections

Sub-array module

Thermal diagram

SUPA Scottish Universities Physics Alliance

Cryostat design

Key challenges:

- Cooling 300 kg of optics to 4K
- Getting all the signal cables out...
- Stray light control
- Magnetic shielding of SQUID circuitry in the multiplexer
- Liquid-cryo free operation

Cryogenics

- Cooling provided by dilution refrigerator (Leiden Cryogenics)
- Operates from temperature of 4 K
 - Traditionally provided by bath of liquid helium
 - Instead use mechanical (pulse tube) cooler to reduce running costs

Leader in LT Techniques

- First commercial "dry" dilution refrigerator(?)
- Two more pulse tube coolers used for rest of instrument

Scottish Universities Physics Alliance

Dilution refrigerator insert

1K enclosure ("1K box")

Focal plane unit

Size

UK Astronomy Technology Centre

Installing the mirrors

Installing the optics box

Radiation shields

Vacuum vessel

Onto the telescope...

Survey potential

SCUBA Galactic Centre Survey

~15 shifts (or 120 hrs) over 2 years of excellent weather telescope time

SCUBA-2 could map the ENTIRE AREA shown above (red rectangle) in just a couple of hours to the same S/N...

COMMON-USER

ARRAY - 2

Status

Science & Technology Facilities Council UK Astronomy Technology Centre

SCUBA

Scottish Universities Physics Alliance

Array measurements

- TES readout is complex
- Each pixel read through three SQUID stages
 - Each stage has to be set up with appropriate parameters
 - Previously reported results taken with manual setup, limiting number of pixels measured
 - Largest number: 72 pixels

More information on previous measurements: Woodcraft et al., Rev. Sci. Inst. 78, 024502 (2007) <u>http://reference.lowtemp.org/woodcraft_scuba2proto.</u> pdf Woodcraft et al., Proc SPIE 6275, 62751F (2006) <u>http://reference.lowtemp.org/woodcraft_spie06.pdf</u>

Data acquisition

Multi-channel electronics developed by UBC/NIST/UK ATC

Full array measurements

- Now have MCE available to carry out array tests
- Automatically sets up and reads out whole sub-array of 1280 pixels

SLIPA

Scottish Universities Physics Alliance

Science & Technology Facilities Council

UK Astronomy Technology Centre

Yields

- Measured two commissioning grade arrays one 450 µm and one 850 µm
- Yield: 70% and 40% (respectively)
- Bad pixels almost entirely due to faults on multiplexer wafer
- Multiplexers for science grade arrays have been produced and screened with yield ~ 90%
- Therefore we have confidence that science grade arrays will have acceptable yields

Uniformity

- All pixels in one sub-array are wired in series
- Therefore need uniformity in properties
 - e.g. T_c, thermal conductance, detector resistance
- Too great variation means no single value of bias suiting all pixels
- Test show that both arrays are operable simultaneously
 Confirms previous tests on small numbers of pixels distributed across arrays

Final instrument

- Detector arrays operating at 100 mK
- Measured optical NEPs of ~2.5 × 10^{-17} W/ \sqrt{Hz}
- 10,000+ pixels in two focal planes
- Two arrays installed with remaining 6 to be added in Hawaii

Current status

- Instrument is now essentially complete

 nearing delivery standard
- Instrument verification is now underway; optical tests, operational modes etc.

• SCUBA-2 will be the first wide-field, ultra-sensitive camera for submm astronomy

- The technology is state-of-the-art and represents a great investment on behave of the funding agencies
- Recent tests show that yield will be acceptable and confirm that simultaneous operation of an entire subarray is possible
- Delivery to the JCMT is planned for late summer 2007 with survey science starting early next year

Institutions

Science & Technology Facilities Council UK Astronomy Technology Centre

Instrument design, construction, testing, commissioning: ATC, Edinburgh

Multiplexer and TES devices: *NIST*, Boulder

Detector micromachining: University of Edinburgh

"1-K box" design and construction, detector test programme, filters/dichroic: Cardiff University

- Waterloo
- Warm electronics: University of British Columbia, MUX testing, University of Waterloo

Telescope infrastructure: *Joint Astronomy*

Centre, Hawaii

