

UPA

Scottish Universities Physics Alliance

Detectors for the 10 000 pixel SCUBA-2 superconducting sub-mm camera for astronomy

Talk given at 2006 IRMMW-THz conference, Shanghai, China, 19th September 2006

Adam Woodcraft (for the SCUBA-2 consortium) SUPA Institute for Astronomy, University of Edinburgh http://woodcraft.lowtemp.org/

Sub-mm astronomy

- \bullet Sub-mm astronomy: wavelengths of a few hundred μm
 - Typically in "windows" around 450 and 850 μm (670 and 350 GHz)
- Lets us see cold things: peak in 10-K blackbody around 300µm
 e.g. objects in formation (stars, planets...)

 Also lets us see far away (red shifted) warmer objects: peak in 40 K blackbody at red shift Z=3 is at 300 µm

> • Sub-mm emission usually "optically thin"; so we see the interior rather than just the surface of objects

Example: Eagle Nebula in visible light (Hubble Space Telescope):

Sub-mm astronomy

- Sub-mm astronomy: wavelengths of a few hundred μm
 - Typically in "windows" around 450 and 850 μm (670 and 350 GHz)
- Lets us see cold things: peak in 10-K blackbody around 300µm
 e.g. objects in formation (stars, planets...)
 - Also lets us see far away (red shifted) warmer objects: peak in 40 K blackbody at red shift Z=3 is at 300 µm
 - Sub-mm emission usually "optically thin"; so we see the interior rather than just the surface of objects

Example: sub-mm (850 µm) contours overlaid (SCUBA)

Instruments

- Instruments limited by small number of pixels
 - Gone from 1 pixel to 100s in a decade
 - Need more pixels!
 - But: can't compromise on noise performance
 - Aim is "BLIP" background limited performance
 - Noise limit set by photon (shot) noise from sky

JCMT, Mauna Kea, Hawaii

UKT14 1986-1996 1 pixel

SCUBA 1997-2006 128 pixels

Detectors

- Most sensitive detection method is to use bolometers
 - Measure temperature rise due to absorbed radiation
 - Respond to wide wavelength range define with filters
- Traditionally use NTD germanium thermistors
 - BUT: not background limited for best telescopes
 - Hard to make large arrays:
 - Ge chips have to be individually mounted on each pixel
 - Can't multiplex without prohibitive noise penalty
 - Separate wiring and read-out electronics for each pixel required

SCUBA individual pixel

SCUBA focal plane

SPIRE array – multiple pixels on one silicon wafer

Solution

- Sensitive bolometer requires large dR/dT
- Very large dR/dT through superconducting transition
 Basis of TES (transition edge sensor), operated in superconducting transition
- Other advantages:

- TES sensors can be deposited on silicon wafer:
 - Entire array can be constructed with no operations at the level of a single pixel
- Detectors can be multiplexed with acceptable performance

SCUBA-2

- Wide field TES imaging camera with up to 1000 x mapping speed of predecessor (SCUBA)
- Sensitivity limited by sky background (photon noise)
- Capable of carrying out large scale surveys
 - So far only area of about size of moon mapped to any depth in sub-mm

UKT14 1986-1996 1 pixel

SCUBA 1997-2006 128 pixels

SCUBA-2 2006+ 10240 pixels

Institutions

Multiplexer and TES devices: *NIST, Boulder*

commissioning: ATC, Edinburgh

Detector micromachining: University of Edinburgh

Instrument design, construction, testing,

"1-K box" design and construction, detector test programme, filters/dichroic: *Cardiff University*

Warm electronics: *University of British Columbia,* MUX testing, *University of Waterloo*

Telescope infrastructure: *Joint Astronomy Centre, Hawaii*

Cryogenics

• Arrays must be operated from heat sink at 0.06 K

- Cooling provided by dilution refrigerator (Leiden Cryogenics)
- Operates from temperature of 4 K
 - Traditionally provided by bath of liquid helium
 - Instead use mechanical (pulse tube) cooler to reduce running costs
 - First commercial "dry" dilution refrigerator(?)
- Two more pulse tube coolers used for rest of instrument

Dilution refrigerator insert

Size

• Instrument size driven by need to cool large mirrors to below 10 K (to reduce thermal background on arrays)

Multiplexing

- Previous (much smaller) TES arrays have had separate detector and SQUID multiplexer chips
- For arrays of this size, number of wires would be impractical
- Instead, use new configuration: in-focal-plane multiplexer
 - MUX wafer is bonded to detector wafer
 - Indium bump bonds provide electrical connections

Detectors

- Simultaneous dual colour imaging (450 and 850 μm)
- Each focal plane made up of four 1280 pixel sub-arrays

SCUBA-2 sub-array (SCUBA array inset)

Detectors

- Time division multiplexing scheme
 - Separate readout box for each sub-array
- Pixels use Mo/Cu bi-layer superconductors
 - Weak thermal link provided by silicon nitride membrane
 - Pixel heaters used for sky background compensation

Sub-array module

Detector testing

- \bullet Tests carried out on prototype 450 and 850 μm arrays
 - First tests of in-focal-plane MUX detector
 - First tests of arrayed SCUBA-2 style pixels
 - (Previous tests on single pixels only)
- Tests validate in-focal-plane concept as well as this implementation
- Tests carried out:
 - In dedicated testbed (Cardiff University)
 - Contains calibrated illuminator for optical measurements
 - In SCUBA-2 instrument (ATC, Edinburgh)
 - With test readout electronics
 - With prototype of final electronics

Multiplexing

- Readout chain (through three series of SQUID) is complex, and requires tuning of several parameters
 - Automatic tuning not available yet
- Worked on small blocks of up to 72 pixels
 - •All pixels read out simultaneously using multiplexer
 - •Shown here responding to modulation of detector bias (6 columns, 12 pixels in each row

Load curves

- Measure detector current as a function of bias current in multiplexed mode
- Basic characterization method
- Curves have expected shape
- Good agreement
 between two readout
 systems

Load curves

 Take set of load curves at different pixel heater settings

• Normal state resistance in agreement with design values $\sqrt{}$

Load curves

- Also plot as power in detector vs voltage
- Power constant in superconducting transition $\sqrt{}$
- Power proportional to V^2 in normal state $\sqrt{}$
- Responsivity (S) in transition proportional to $1/V \sqrt{}$
- S = 5e5 to 8e6 A/W. Values agree with those from modulating bias

G32

G34

Power measurements

- Three ways of applying power to a pixel:
 - Bias
 - Pixel heater
 - Optical signal
 - Calculate power using calibration for illuminator power and measured filter profiles
- Good agreement when power is applied all three ways
 - Calibration is well understood
 - We can have confidence in Noise Equivalent Power (NEP) values

Example

- For each load
 curve, plot electrical
 (heater+bias) power
 in transition
- Electrical power constant as heater power varies $\sqrt{}$
- Difference in power for shutter open and closed same for different pixels (NO calibration factor!) $\sqrt{}$

Performance

Parameter	450μm			850µm		
	Spec	Single pixel	Proto array testing	Spec	Single pixel	Proto array testing
T _c (mK)	150 – 170	193	175	120 – 140	133	130
Total power (pW)	200 – 250	267	460	40 – 60	57	60
G (nW/K)	~5	5.2	9.0	~1.5	1.6	2.0
Optical NEP (W/√Hz)	<29 × 10 ⁻¹⁷	9.7 × 10 ⁻¹⁷	14 × 10 ⁻¹⁷	<7 × 10 ⁻¹⁷	3.5 × 10 ⁻¹⁷	2.5 × 10 ⁻¹⁷
τ_{e} (msec)	<1.5	0.2	0.6	<2.8	0.6	1.0

Conclusions

- Detectors and read-outs operate in a stable and reproducible fashion
- Basic concept of in-focal-plane multiplexer works
- Array design has been proven with performance parameters met

- *Instrument* performance has been verified using prototype array
- Results have enabled us to go ahead with science grade array production