From the birth of stars to measuring the neutrino mass: Applied condensed matter physics in space, on mountains, and under them

> Adam Woodcraft http://woodcraft.lowtemp.org SUPA, University of Edinburgh

Seminar at Birmingham University, 23rd April 2009



science & Technology Facilities Council UK Astronomy Technology Centre Technology for Experimental and Observational Physics in Scotland



#### Outline



Science & Technology Facilities Council UK Astronomy Technology Centre

• Sub-mm astronomy and SCUBA-2

- SCUBA-2 cryogenics
- SPIRE
- The future
- Beyond astronomy
- Conclusions







## Sub-mm astronomy and SCUBA-2





Scottish Universities Physics Alliance

3

#### Why do sub-mm astronomy? (\*) science & Technology Facilities Council UK Astronomy Technology Centre

It lets us see cold things - peak in a 10 K blackbody is at 300 μm

Cold things are interesting: usually objects in formation (galaxies, stars, planets...)

> Sub-mm emission usually "optically thin"; so we see the interior rather than just the surface of objects

> > Example: sub-mm (850 µm) contours overlaid (SCUBA)





#### Why NOT to do sub-mm astronomy

It's hard!

Atmosphere is almost totally opaque "Windows" partially open up only at high and dry enough sites e.g. Mauna Kea, Hawai'i (4200 m altitude) - Need mountain-top observatories, balloons, or space missions (coming soon...)





### Applications



Unlike at optical and NIR wavelengths, historically few commercial and military applications in sub-mm

Development largely in universities and government labs rather than industry

Cost \$2000/pixel c.f. \$0.12 for infrared, \$0.01 for optical







- Huge revolution in sub-mm astronomy over the past decade
- very limited access to this region of the spectrum before
- SCUBA on JCMT has been largely responsible for this:
  - Built at UK ATC in Edinburgh
  - Produced similar advances that occurred in IR astronomy in the 1980's
  - At the peak of its productivity had a citation rate to rival that of the Hubble Space Telescope



#### SCUBA on the JCMT



Science & Technology Facilities Council UK Astronomy Technology Centre

- One of the first imaging "arrays" for the submm
- 128 pixels in two arrays
- Detectors cooled to 100 mK with dilution refrigerator (highest DR in the world?)
- Came into service in 1997
- Made a number of seminal discoveries
- Retired from service in 2005
  - DR broke









#### SCUBA-2



- Instruments limited by small number of pixels
  - Gone from 1 pixel to 100s in a decade need more!
- Detector development in relative infancy



Technology for Experimental and Observational Physics in Scotland

#### SCUBA-2



Science & Technology Facilities Council UK Astronomy Technology Centre







Scottish Universities Physics Alliance

#### Survey potential

science & Technology Facilities Council UK Astronomy Technology Centre



SCUBA Galactic Centre Survey

~15 shifts (or 120 hrs) over 2 years of excellent weather telescope time

SCUBA-2 could map the ENTIRE AREA shown above (red rectangle) in just a couple of hours to the same S/N...

Can do large scale surveys for the first time (currently only area similar to a few full moons explored in any depth)









#### **Bolometer schematic**







Scottish Universities Physics Alliance

### Superconducting bolometers

Science & Technology Facilities Council UK Astronomy Technology Centre

- Superconducting detectors (transition edge sensor; TES)
  - Very large dR/dT at transition
    - High sensitivity
  - But have to keep on transition
  - Key to use in astronomy was realisation (K. Irwin, 1995) that voltage bias keeps them automatically on transition
  - Keeps at constant temperature, current proportional to signal
    Bilayer to tune Tc through proximity effect





#### Superconducting bolometers Science & Technology Facilities Council UK Astronomy Technology Centre

Advantages:

- High sensitivity
- Low fundamental noise limits
- Can be constructed on an array scale by thin-film deposition and lithography
- Can be multiplexed with minimal noise penalty by superconducting electronics

Has taken  $\sim$  10 years to find and eliminate excess noise sources to make TES arrays practical

New generation of instruments using TES arrays now in construction and on telescopes





#### SCUBA-2



Scottish Universities Physics Alliance

- Most ambitious TES instrument to date is SCUBA-2
- Eight arrays; 1280 pixels each
- Constructed from detector and multiplexer silicon wafer, indium bump bonded together like an infrared array





#### In-focal plane multiplexing



Science & Technology Facilities Council UK Astronomy Technology Centre

#### Large array possible only by in-plane multiplexing









SUPA

#### Silicon micro-machining





#### Institutions





Science & Technology Facilities Council UK Astronomy Technology Centre







Boulder

Detector micromachining: University of Edinburgh

Instrument design, construction, testing,

commissioning: ATC, Edinburgh

Multiplexer and TES devices: *NIST*,



"1-K box" design and construction, detector test programme, filters/dichroic: *Cardiff University* 





Warm electronics: *University of British Columbia,* MUX testing, *University of Waterloo* 



Telescope infrastructure: Joint Astronomy

Centre, Hawaii





#### SCUBA-2



- "SCUBA -2 has been one of the most challenging projects ever undertaken by UK astronomy in that completely new technologies have been needed to realise the ambitious science goals"
- "almost certainly one of the most complex projects that UK astronomers have ever attempted"
- "most sensitive thermal detectors ever built" (measure ~ pW of power)





#### Measurements



- In-plane MUX changes detector behaviour significantly
- Novel pixel design straight from 1 pixel to full sub-array
- NIST do not have facilities to test such large arrays
- Done by team in Cardiff
- Modelling detectors to determine basic parameters (e.g. Tc, normal state resistance, load resistance, thermal conductance mutual inductances...)
- Information fed back to NIST for next generation
- Detector development carried out in parallel with instrument design and build



Scottish Universities Physics Alliance

#### Full array measurements



Science & Technology Facilities Council UK Astronomy Technology Centre





W



Observational Physics in Scotland



## SCUBA-2 croyogenics





Scottish Universities Physics Alliance

#### Sub-array module



Cryogenics dominates instrument design. Need detectors ~ 100 mK



#### Focal plane layout



science & Technology Facilities Council UK Astronomy Technology Centre







#### Assembly







#### Size

Science & Technology Facilities Council UK Astronomy Technology Centre Dilution refrigerator

 Instrument size driven by need to cool large mirrors to below 10 K (to reduce thermal background on arrays)







#### Thermal design



- Few ULT instruments have been built on this scale
  - Unlike most cryogenic experiments, can't rely on tried and tested materials and techniques
- Lack of material property information a big problem (will come back to this later)
- So lots of development required, and some new ideas
- Has to be work in a harsh environment
  - MUST be reliable (ground based telescope: ~£10k/night)
- SCUBA-2 is an extreme example, but cryogenics widespread in astronomy









## Thermal design

- Large instrument; changes are expensive and time consuming
- Long cooldown-warmup cycle
- So need to get it right!
- Most complex mK instrument ever?



• Two examples...



#### SCUBA-2 - sapphire support Science & Technology Facilities Council UK Astronomy Technology Centre

Sapphire thermal boundary isolation supports instead of Kevlar





2.5 µW heat leak from 1 K to 100 mK. Used in Clover





#### SCUBA-2 - sapphire support & Science & Technology Facilities Council UK Astronomy Technology Centre

#### Mechanically extremely robust









#### SCUBA-2 - sapphire

•Over 7 orders of magnitude between sapphire joints and bolted conducting joints at 100 mK

• Highest and lowest direct conductance measurements in literature



#### "Hairbrush"



Science & Technology Facilities Council UK Astronomy Technology Centre

Provides heat sinking and mechanical support to detectors without breaking them due to differential thermal contraction Made from high conductivity beryllium copper alloy







### Glueing the hairbrush to the array

Glueing has to be uniform, musn't bridge the tines Thermal conduction has to be good enough

- Have to get it right first time detector arrays are very valuable
- Lengthy test programme, making and testing samples Solution: desktop robot deposits metered blob of epoxy on each tine







#### Thermal design

Science & Technology Facilities Council UK Astronomy Technology Centre

In the first test, the instrument cooled down below the required temperature, and more quickly than required!







#### Packed on a (big) truck...



Science & Technology Facilities Council UK Astronomy Technology Centre







#### Onto the telescope...



Science & Technology Facilities Council UK Astronomy Technology Centre







#### SCUBA-2 on JCMT



Science & Technology Facilities Council Astronomy Technology Centre















#### Herschel



- Study the formation of galaxies in the early universe and their subsequent evolution
- Investigate the creation of stars and their interaction with the interstellar medium
- Observe the chemical composition of the atmospheres and surfaces of comets, planets and satellites



42





#### Planck Surveyor



Science & Technology Facilities Council UK Astronomy Technology Centre

- What are the (more precise) values of fundamental cosmological parameters such as the Hubble constant?
- Can it be shown conclusively that the early Universe passed through an inflationary phase?
- What is the nature of the dark matter that dominates the present Universe?



![](_page_42_Picture_7.jpeg)

![](_page_42_Picture_8.jpeg)

#### Background

Science & Technology Facilities Council UK Astronomy Technology Centre

• Fair amount of experience with cryogenics in space > 1 K

![](_page_43_Figure_3.jpeg)

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

#### Background

![](_page_44_Picture_1.jpeg)

Scottish Universities Physics Alliance

• But experience around 4 K more limited

![](_page_44_Figure_3.jpeg)

Technology for Experimental and

Observational Physics in Scotlan

#### Background

46

![](_page_45_Picture_1.jpeg)

#### • Even less experience below 1 K

![](_page_45_Figure_3.jpeg)

#### SPIRE thermal design

![](_page_46_Picture_1.jpeg)

![](_page_46_Figure_3.jpeg)

![](_page_46_Picture_4.jpeg)

#### SPIRE detectors

![](_page_47_Picture_1.jpeg)

- Arrays: semiconductor bolometers
  - more traditional than SCUBA-2, no multiplexing
  - made in USA (again, but UK now building detectors)

![](_page_47_Figure_5.jpeg)

![](_page_47_Picture_6.jpeg)

![](_page_47_Picture_7.jpeg)

![](_page_47_Picture_8.jpeg)

![](_page_48_Picture_0.jpeg)

# The future

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

Scottish Universities Physics Alliance

![](_page_49_Picture_0.jpeg)

![](_page_49_Picture_1.jpeg)

• Results from SCUBA-2, SPIRE and HFI:

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

#### SPICA

51

![](_page_50_Picture_1.jpeg)

- Breakthrough in sensitivity in mid infra-red
  - Formation and evolution of galaxies
  - Imaging and spectroscopy of extrasolar young massive planets
  - Chemistry of asteroids and comets
- Selected as Cosmic Vision candidate

![](_page_50_Figure_7.jpeg)

![](_page_50_Picture_9.jpeg)

#### 52

#### SPICA and beyond

- Longer term missions being planned, e.g. FIRI, IXO
- Major risk areas
  - Cryogenics and refrigerators
    - Need material property measurements, new techniques, optimal cryogenic design
  - Detectors
    - European detectors being developed with large UK contribution

![](_page_51_Picture_8.jpeg)

![](_page_51_Picture_9.jpeg)

![](_page_51_Picture_10.jpeg)

![](_page_51_Picture_11.jpeg)

![](_page_51_Picture_12.jpeg)

![](_page_52_Picture_0.jpeg)

# Beyond astronomy

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

Scottish Universities Physics Alliance

#### CUORE

![](_page_53_Picture_1.jpeg)

- CUORE
  - Use bolometers to measure heat pulse due to double beta decay in tellurium
  - Absorber is the tellurium crystal itself (source=detector)
  - Requirements:
  - Very low temperature operation (~ 10 mK)
    - Higher masses and lower temperature than astronomy
  - Low background radiation
    - Radiopure materials
    - 6 tons of Roman lead (no <sup>210</sup>Pb) at 4 K
      - 2.7 tons at 10 mK!
  - Large crystal mass

![](_page_53_Picture_13.jpeg)

![](_page_53_Picture_14.jpeg)

#### CUORE

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_3.jpeg)

![](_page_54_Picture_4.jpeg)

![](_page_54_Picture_5.jpeg)

Scottish Universities Physics Alliance

#### TEOPS

![](_page_55_Picture_1.jpeg)

- Research pooling: TEOPS
  - Technology in Experimental and Observational Physics in Scotland
- Groups
  - ATC, Royal Observatory, Edinburgh
  - Glasgow University:
  - Institute for Gravitational Research
  - Experimental Particle Physics group

![](_page_55_Picture_9.jpeg)

![](_page_55_Picture_10.jpeg)

![](_page_55_Picture_11.jpeg)

Scottish Universities Physics Alliance

#### **TEOPS** examples

![](_page_56_Picture_1.jpeg)

- Next generation gravitational wave detectors expected to operate at cryogenic temperatures to reduce thermal noise
  - Major source of thermal noise comes from optical coatings
  - Glasgow carrying out mechanical dissipation (Q) measurements on coated silicon samples
- Using experience from Edinburgh in experimental design and operation
- Other direction:
  - Silicate bonding experience used for deformable mirrors in astronomy

![](_page_56_Picture_8.jpeg)

![](_page_56_Picture_9.jpeg)

#### **TEOPS** examples

![](_page_57_Picture_1.jpeg)

- ATLAS
  - Looking at new materials for thermal management in detectors
  - Plan to operate at lower temperatures in future (-40 C?)
  - Benefit from Edinburgh experience in measuring thermal conductivity

![](_page_57_Picture_6.jpeg)

![](_page_57_Picture_7.jpeg)

![](_page_57_Picture_8.jpeg)

![](_page_57_Picture_9.jpeg)

#### **TEOPS** examples

![](_page_58_Picture_1.jpeg)

• SCUBA-2 detectors wire-bonded using ATLAS equipment in Glasgow after problems with original set-up

![](_page_58_Picture_3.jpeg)

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

## TEOPS cryostat

![](_page_59_Picture_1.jpeg)

Science & Technology Facilities Council UK Astronomy Technology Centre

- Testbed for thermal and electrical conductivity measurements
  - Better understanding of cryogenic material properties very important!
  - TEOPS facility; available for all groups (+ external STFC)
  - Supporting existing work at ATC, Edinburgh and Glasgow university
  - Doing more speculative measurements
  - Effort: one PhD student + some of my time

![](_page_59_Picture_9.jpeg)

![](_page_59_Picture_10.jpeg)

![](_page_59_Picture_11.jpeg)

## TEOPS cryostat

- Measurements so far for
  - SCUBA-2
  - MIRI (on JWST)
- Near future:
  - Conductivity of silicate bonded samples for IGR
  - Conductivity of materials for ATLAS (reach lower temperatures than in their setup)

![](_page_60_Picture_7.jpeg)

Science & Technology Facilities Council

UK Astronomy Technology Centre

 Conductivity of various materials for future astronomical instruments

![](_page_60_Picture_9.jpeg)

![](_page_60_Picture_10.jpeg)

61

#### STFC work

![](_page_61_Picture_1.jpeg)

 Part of Cfl bid to improve cryogenic knowledge across STFC

![](_page_61_Picture_3.jpeg)

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_5.jpeg)

![](_page_61_Picture_6.jpeg)

![](_page_62_Picture_0.jpeg)

# Conclusions

![](_page_62_Picture_2.jpeg)

![](_page_62_Picture_3.jpeg)

#### Conclusions

- science & Technology Facilities Council UK Astronomy Technology Centre
- Exciting results expected in the near future from
  - SCUBA-2
  - Herschel
  - Planck
  - CUORE etc.

![](_page_63_Picture_7.jpeg)

- R&D for these programmes has produced a large amount of information and experience for future similar (and dissimilar) instruments
  - There is a lot of "science" in designing (and calibrating) these instruments
- Research pooling can work very well

![](_page_63_Picture_11.jpeg)

![](_page_63_Picture_12.jpeg)

cottish Universities Physics Alliance

![](_page_64_Picture_0.jpeg)

![](_page_64_Picture_1.jpeg)

# THE END

![](_page_64_Picture_3.jpeg)

![](_page_64_Picture_4.jpeg)