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From the birth of stars to 
measuring the neutrino mass:
Applied condensed matter physics in space, 

on mountains, and under them
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Sub-mm 
astronomy and 

SCUBA-2
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Example: Eagle Nebula in visible 
light (Hubble Space Telescope):
Example: sub-mm (850 μm) 
contours overlaid (SCUBA)

• Sub-mm emission usually “optically 
thin”; so we see the interior rather than 
just the surface of objects

It lets us see cold things - peak in a 10 K blackbody is at 300 
μm

Cold things are interesting: usually objects in formation 
(galaxies, stars, planets…)

Why do sub-mm astronomy?
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Why NOT to do sub-mm astronomy
It’s hard!

Atmosphere is almost totally opaque
“Windows” partially open up only at high and dry enough 
sites e.g. Mauna Kea, Hawai’i (4200 m altitude)
- Need mountain-top observatories, balloons, or space 
missions (coming soon…)
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Between 
photoconductors and 
coherent detectors.

Atmosphere only just 
transparent
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Applications

Unlike at optical and NIR 
wavelengths, historically few 
commercial and military 
applications in sub-mm

Development largely in 
universities and government 
labs rather than industry

Cost $2000/pixel c.f.
$0.12 for infrared,
$0.01 for optical
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• Huge revolution in sub-mm astronomy over the past decade 
– very limited access to this region of the spectrum before

• SCUBA on JCMT has been largely responsible for this:
Built at UK ATC in Edinburgh
Produced similar advances that occurred in IR astronomy 

in the 1980’s
At the peak of its productivity had a citation rate to rival 

that of the Hubble Space Telescope

The Submm Revolution
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SCUBA on the JCMT 
• One of the first imaging 
“arrays” for the submm

• 128 pixels in two arrays

• Detectors cooled to 100 mK 
with dilution refrigerator 
(highest DR in the world?)

• Came into service in 1997

• Made a number of seminal 
discoveries

• Retired from service in 2005
• DR broke
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SCUBA-2

UKT14
1986-1996
1 pixel

SCUBA
1997-2005
128 pixels

SCUBA-2
2009+
10240 pixels

• Instruments limited by small number of pixels
• Gone from 1 pixel to 100s in a decade – need more!

• Detector development in relative infancy
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SCUBA-2
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~15 shifts (or 120 hrs) 
over 2 years 

of excellent weather 
telescope time

SCUBA-2 could map the ENTIRE AREA shown above (red rectangle) 
in just a couple of hours to the same S/N...

Full moon

Galactic Plane

Survey potential

SCUBA Galactic Centre 
Survey

Can do large scale surveys for the first time (currently only area 
similar to a few full moons explored in any depth)



13

Bolometers

Bolometer schematic

Weak thermal link

Thermometer

Absorber

Heat sink

Radiation
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Superconducting bolometers
Superconducting detectors
(transition edge sensor; TES)

• Very large dR/dT at transition
• High sensitivity

• But have to keep on 
transition
• Key to use in astronomy was 
realisation (K. Irwin, 1995) that 
voltage bias keeps them 
automatically on transition
• Keeps at constant 
temperature, current 
proportional to signal
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Superconducting bolometers

Advantages:
• High sensitivity
• Low fundamental noise limits
• Can be constructed on an array scale by thin-film 
deposition and lithography
• Can be multiplexed with minimal noise penalty by 
superconducting electronics

Has taken ~ 10 years to find and eliminate excess noise 
sources to make TES arrays practical

New generation of instruments using TES arrays now in 
construction and on telescopes
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SCUBA-2
• Most ambitious TES instrument to date is SCUBA-2
• Eight arrays; 1280 pixels each
• Constructed from detector and multiplexer silicon wafer, 
indium bump bonded together like an infrared array

Detector wafer Indium bump 
bonds

Multiplexer wafer
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Active SQUID

Dummy SQUID

Summing coil 
gradiometer

Input
transformer

~1mm

In-focal plane multiplexing

Array scale

Large array possible only by in-plane multiplexing
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Silicon micro-machining 

Missing brick

“Trench” for 
thermal isolation

Lighter colour 
due to charge 

build up
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Institutions
Instrument design, construction, testing, 
commissioning: ATC, Edinburgh
Multiplexer and TES devices: NIST, 
Boulder
Detector micromachining: University of 
Edinburgh
“1-K box” design and construction, 
detector test programme, filters/dichroic: 
Cardiff University
Warm electronics: University of British 
Columbia, MUX testing, University of 
Waterloo
Telescope infrastructure: Joint Astronomy 
Centre, Hawaii
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• “SCUBA -2 has been one of the most 
challenging projects ever undertaken by UK 
astronomy in that completely new     
technologies have been needed to realise the 
ambitious science goals”

• “almost certainly one of the most complex 
projects that UK astronomers have ever 
attempted”

• “most sensitive thermal detectors ever built”
(measure ~ pW of power)

SCUBA-2
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• Information fed back to NIST for 
next generation
• Detector development carried 
out in parallel with instrument 
design and build

Measurements
• In-plane MUX changes detector behaviour significantly
• Novel pixel design straight from 1 pixel to full sub-array
• NIST do not have facilities to test such large arrays
• Done by team in Cardiff
• Modelling detectors to determine basic parameters (e.g. 
Tc, normal state resistance, load resistance, thermal 
conductance mutual inductances…)
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Full array measurements



23

Full array measurements
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SCUBA-2 
croyogenics
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Detector unit with one 
prototype array installed

Fully populated 
detector unit

Sub-array module

45mm

Shielded SQUID
Series arrays

Sub-array

Niobium flex
cables

Cryogenics dominates instrument design. Need detectors ~ 100 mK
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Focal plane layout
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Assembly
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Size
• Instrument size driven by need to cool 
large mirrors to below 10 K (to reduce 
thermal background on arrays)
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Thermal design
• Few ULT instruments have been built on this scale

• Unlike most cryogenic experiments, can’t rely on tried and 
tested materials and techniques

• Lack of material property information a big problem (will come 
back to this later)

• So lots of development required, and some new ideas
• Has to be work in a harsh environment

• MUST be reliable (ground based telescope: ~£10k/night)

• SCUBA-2 is an extreme example, 
but cryogenics widespread in 
astronomy
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Use of cryogenics in astronomy
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Thermal design
• Large instrument; changes 

are expensive and time 
consuming

• Long cooldown-warmup 
cycle

• So need to get it right!
• Most complex mK 

instrument ever?

• Two examples…
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Warm sideCold side
Thermal isolation

Sapphire thermal boundary isolation supports instead of 
Kevlar

SCUBA-2 – sapphire support

2.5 μW heat leak from 1 K to 100 mK. Used in Clover
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Mechanically extremely robust

SCUBA-2 – sapphire support
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SCUBA-2 – sapphire support
•Over 7 orders of 
magnitude between 
sapphire joints and 
bolted conducting joints 
at 100 mK

• Highest and lowest 
direct conductance 
measurements in 
literature
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“Hairbrush”
Provides heat sinking and mechanical support to detectors 
without breaking them due to differential thermal contraction
Made from high conductivity beryllium copper alloy
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Glueing the hairbrush to the array
Glueing has to be uniform, musn’t bridge the tines
Thermal conduction has to be good enough
Have to get it right first time – detector arrays are very 
valuable
Lengthy test programme, making and testing samples
Solution: desktop robot deposits metered blob of epoxy on 
each tine 
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Thermal design
In the first test, 
the instrument 
cooled down 
below the 
required 
temperature, and 
more quickly 
than required!
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Packed on a (big) truck…
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Onto the telescope…
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SCUBA-2 on JCMT
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SPIRE



42

• Study the formation of galaxies in the early universe and 
their subsequent evolution

• Investigate the creation of stars and their interaction with 
the interstellar medium

• Observe the chemical composition of the atmospheres and 
surfaces of comets, planets and satellites

Herschel

Launch May 2009
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Planck Surveyor
• What are the (more precise) values of fundamental 

cosmological parameters such as the Hubble constant?
• Can it be shown conclusively that the early Universe 

passed through an inflationary phase?
• What is the nature of the dark matter that dominates the 

present Universe?
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Background

• Fair amount of experience with cryogenics in space > 1 K
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Background

• But experience around 4 K more limited
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Background

• Even less experience below 1 K
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• Similar issues to 
SCUBA-2
• A bit warmer though 
(300 mK)

•Tricky areas included:
• Light baffles
• Kevlar supports
• Electrical isolation

SPIRE thermal design
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• Arrays: semiconductor bolometers
• more traditional than SCUBA-2, no multiplexing
• made in USA (again, but UK now building detectors)

SPIRE detectors

Photos: JPL
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The future
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• Results from SCUBA-2, SPIRE and HFI:

Results
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SPICA
• Breakthrough in sensitivity in mid infra-red

• Formation and evolution of galaxies 
• Imaging and spectroscopy of extrasolar young massive 

planets
• Chemistry of asteroids and comets

• Selected as Cosmic Vision candidate

Launch 2017 ??????????????????



52

• Longer term missions being planned, e.g. FIRI, 
IXO

• Major risk areas

• Cryogenics and refrigerators
• Need material property measurements, 
new techniques, optimal cryogenic design

• Detectors
• European detectors being developed with 
large UK contribution

SPICA and beyond
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Beyond astronomy
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CUORE
• CUORE

• Use bolometers to measure heat pulse due to double beta 
decay in tellurium
• Absorber is the tellurium crystal itself (source=detector)

• Requirements:

• Very low temperature operation (~ 10 mK)
• Higher masses and lower temperature than astronomy

• Low background radiation
• Radiopure materials
• 6 tons of Roman lead (no 210Pb) at 4 K

• 2.7 tons at 10 mK!
• Large crystal mass
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CUORE



56

• Research pooling: TEOPS
• Technology in Experimental and 
Observational Physics in Scotland

ATC, Edinburgh

Glasgow University

TEOPS

• Groups
• ATC, Royal 
Observatory, 
Edinburgh
• Glasgow University:
• Institute for 
Gravitational 
Research
• Experimental 
Particle Physics 
group
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• Next generation gravitational wave detectors expected to 
operate at cryogenic temperatures to reduce thermal noise

• Major source of thermal noise comes from optical 
coatings
• Glasgow carrying out mechanical dissipation (Q) 
measurements on coated silicon samples

• Using experience from Edinburgh in 
experimental design and operation 

TEOPS examples

• Other direction:
• Silicate bonding experience used for deformable mirrors 
in astronomy
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TEOPS examples
• ATLAS

• Looking at new materials for thermal management in 
detectors
• Plan to operate at lower temperatures in future (-40 C?)
• Benefit from Edinburgh experience in measuring thermal 
conductivity
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TEOPS examples
• SCUBA-2 detectors wire-bonded using ATLAS equipment in 
Glasgow after problems with original set-up
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• Testbed for thermal and electrical 
conductivity measurements

• Better understanding of cryogenic 
material properties very important! 
• TEOPS facility; available for all 
groups (+ external STFC)
• Supporting existing work at ATC, 
Edinburgh and Glasgow university
• Doing more speculative 
measurements
• Effort: one PhD student + some 
of my time

TEOPS cryostat
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• Measurements so far for
• SCUBA-2
• MIRI (on JWST)

• Near future:
• Conductivity of silicate bonded 
samples for IGR
• Conductivity of materials for 
ATLAS (reach lower temperatures 
than in their setup)

TEOPS cryostat

• Conductivity of various materials for future 
astronomical instruments
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• Part of CfI bid to improve cryogenic knowledge across 
STFC 

STFC work
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Conclusions
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• Exciting results expected in the near future from
• SCUBA-2
• Herschel
• Planck
• CUORE etc.

• R&D for these programmes has produced a large 
amount of information and experience for future similar 
(and dissimilar) instruments

• There is a lot of “science” in designing (and 
calibrating) these instruments

• Research pooling can work very well

Conclusions
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THE END


	THE END

