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1 Introduction

A common method to help characterise cryogenic semiconductor bolometers is to take
“load curves” – measurements of the bolometer voltage as a function of current. This
document explains what measurements are usually made, how they are used to obtain
information on the bolometers, and mentions some common misconceptions. In particular
my aim is to point out how simple modelling a bolometer in this way really is, even though
this is not always evident. I do not intend to go into any area in great detail, since this is
available elsewhere. Instead, I will concentrate on the general principles, some of which
are not made particularly clear in the usual works. Further reading is suggested in Box 4.

The results from modelling can also be used to predict the noise performance of a
bolometer [1]; this is somewhat more complex and is not discussed here. For complete-
ness, footnotes give more detailed information on various topics, and for most purposes
can be safely ignored.

2 Definitions and assumptions

We consider a bolometer to be a very simple device, shown schematically in Fig. 1. It
consists of an absorber at temperature T which is weakly thermally linked to a heat sink
at temperature T0. We shall generally describe T0 as the stage temperature, since when
doing measurements it corresponds to the cold stage of the fridge we are using1. We

1In practise there will be a small thermal gradient between the thermometer on the fridge cold stage and
the heat sink of the bolometer itself. This is generally too small to worry about.
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Figure 1: Ideal bolometer schematic

Box 1

Departures from the assumptions made in this document as often known as “non-ohmic”
effects, and generally seem to fall into two types.
Electric field effects occur when the bolometer resistance is a function of voltage as well
as temperature (R = R(T, V )).
Some bolometers also exhibit electron-phonon decoupling. This is an effect in which
there is a finite thermal conductance between the electrons and the phonons in the resistor.
Although not fully understood, it can be modelled well by treating them as physically
separate components separated by a thermal conductance which varies as a power-law
with temperature.
If non-ohmic effects are present, then many of the conclusions in this document are not
true. However, the ideal bolometer model can be extended to include these effects. For
results obtained without using the model, it is often possible to find areas in which these
effects are negligible and to still obtain valid results.

usually call the absorber temperature, T , the bolometer temperature. We assume that we
can write the thermal conductance of the weak thermal link as G(T ) (note that is is a
function of temperature). This is usually a very good assumption, unless electron-phonon
decoupling is present (see Box 1) 2.

Attached to the absorber is a resistor; we use the fact that the resistance changes with
temperature to determine the absorber temperature. We assume that we can write the
resistance as R(T ); in other words, it depends on temperature alone. This doesn’t have
to be the case (see Box 1). There are two sources of power dissipated in the bolometer
absorber. Electrical power from the resistor, P , is just V I where V is the voltage across
the bolometer and I is the current through it. There may also be incident “optical” (sub-
mm) power, which we call Q here. We also make the assumption that both types of power
have exactly the same effect on the bolometer3.

As well as the assumptions described above, the ideal thermal model assumes the

2It is not necessarily the case; while any single material will have a conductance of the form G(T ), the
link may be formed by two sections in series or parallel. Thermal conductance can also depend on quantities
other than temperature, such as magnetic fields.

3This need not be the case if electron-phonon decoupling is present (Box 1), since the electrical power
heats the electrons in the thermometer, and optical power heats the lattice.

2



Box 2 List of terms

Term Definition Alternative name Section
T bolometer absorber temperature bolometer temperature 2
T0 bolometer heat sink temperature stage temperature 2

G(T ) thermal conductance of bolometer 2
thermal link

R(T ) bolometer resistor resistance bolometer resistance 2
P bolometer resistor electrical power 2
V voltage across bolometer resistor 2
I current through bolometer resistor 2
Go Thermal model parameter (eq. 1) 2
β Thermal model parameter (eq. 1) 2
R∗ Thermal model parameter (eq. 2) R0 2
Tg∗ Thermal model parameter (eq. 2) ∆, T0 2
m Thermal model parameter (eq. 2) 2
R0 Zero bias resistance 3.1
Q optical power absorbed by bolometer 4
T ′ Equivalent stage temperature 4.2

for optical power Q

following:
– The thermal conductance follows a powerlaw, i.e.

G(T ) = GoT
β (1)

– The thermistor resistance follows the following equation:

R = R∗ exp

(

(

Tg

T

)m
)

(2)

These assumptions are both based on physical principles, and in practise are generally
appropriate. The parameters Go, β, R∗, Tg and m are constant, and the aim is to deter-
mine these parameters for a given bolometer. We can then use the model to predict the
bolometer voltage for any bias current and absorbed optical power. Determining Go is
also useful because it is usually a design goal.

It is usually assumed that m = 0.5. This is not necessarily so but is often a good
assumption [2].

Note that not everybody uses the same terminology for the resistance: R∗ is sometimes
called R0, and Tg may be called ∆ or T0. A list of terms used in this document is given in
Box 2.

3 Using the model

The game with the ideal bolometer model is to fit “load curves”; these are measurements
of the bolometer4 voltage as a function of current. Generally we make such measurements

4To be pedantic, they are measurements of the bolometer resistor voltage.
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Figure 2: An example of load curve measurements. Different symbols correspond to
different stage temperatures as shown (the bolometer is HFI CQM 100 GHz SWB S/N
07).

Figure 3: The load curves from Fig. 2, plotted as current vs resistance. The solid lines
show the chosen values for the zero bias resistance.

at various stage temperatures, to obtain a family of load curves. An example is shown in
Fig. 2. For clarity, not all the measurements are shown.

3.1 R(T)

There are two stages to using the model. The first is to determine R(T ), using equation 2.
Since we have plotted V as a function of I , we can obtain R from the gradient of the plots
in Figure 2. However, it is clear that the gradient is not constant, and indeed becomes
negative for some of the measurements. This is because as the bias current increases, the
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Figure 4: Plot used to determine bolometer resistance as a function of temperature. Solid
points are measured data; the line is a least squares fit.

bolometer heats up, reducing the resistance. This complicates using the bolometer, but
at this stage it just means that we have to make sure we use the start of each load curve
where the resistance is constant. It does mean we have to use our judgement on how much
of the load curve to use. Most people seem to prefer to look at V as a function of I to spot
the point at which the curve deviates from a straight line. I prefer to plot R = V/I on a
log scale, since it makes it much easier to see how much of the load curve we can safely
use; an example is shown in Fig. 3.

We can now plot the zero bias resistance (R0) as a function of temperature. If we plot
log(R0) as a function of 1/

√
T0 (Fig. 4) then the gradient and offset of a linear fit give us

Tg and R∗, assuming that m = 0.5. We should always look at the fit residuals to see that
this value of m is applicable. If not, we can do a non-linear fit to obtain the best fit values
of m, R∗ and Tg. Most people just look at the results in the form of Fig. 4; however, it is
much harder to see departures from m = 0.5 [2].

In principle all thermistors diced from the same wafer should have the same value of
Tg, though in practise one sees some variation. The value of R∗ will depend on the di-
mensions. Note that since it is log(R∗) that appears in equation 2, relatively large changes
in R∗ have little effect. The value of R∗ also depends strongly on the fitted value of Tg.

3.2 G(T) - method 1

Now we just have to find Go and β. This is the point at which the equations can start to
look complicated. But what’s going on is very simple. We are just measuring the thermal
conductance of a “sample” (Fig. 5), just as we might measure the thermal conductance of,
say, a piece of Torlon R© to be used in an instrument. We have one end which is heat sunk
at a chosen temperature (T0); the other end has a heater and a thermometer. We heat up
one end, and can calculate the conductance from the temperature rise and power applied.
The only difference here is that instead of a separate heater and thermometer, we use the
bias heating from the thermometer to heat the sample.
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Figure 5: Layout used to measure the thermal conductance of a material sample.

Figure 6: Measurements from Fig. 2, plotted as power vs temperature.

If the thermal conductance, G, was constant, then we could simply write (by defini-
tion):

P = G∆T, (6)

where ∆T is the temperature difference across our sample. More generally, we can write

P =
∫ T

T0

G.dT. (7)

Since we have assumed equation 1, we can write this5 as

P =
Go

β + 1

(

T β+1 − T β+1

0

)

. (8)

We can now do a non-linear fit to P as a function of T to obtain both Go and β (see Fig. 6).
We can also include T0 as a fit parameter if we aren’t sure of our stage temperatures.

5This is not the form most people use – see Box 3.
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Box 3

It is customary to replace equation 1 with

G = Gso

(

T

T0

)β

. (3)

We then find that

Go =
Gso

T β
0

(4)

and

P =
GsoT0

β + 1

(

(

T

T0

)β+1

− 1

)

. (5)

I don’t find this especially helpful as one then has to allow for Gso being a function of T0,
which can be a nuisance, and I believe it also makes the equations look unnecessarily more
complicated. Likewise people sometimes work with the parameter φ = T/T0 instead of
T .

Now, to do this, we don’t need to worry about the fact that the heat is actually coming
from the resistor we are using to measure temperature. Power is just given by P = V I ,
and we can measure both V and I . Likewise, the temperature is just given from the
resistance (R = V/I) and equation 2. It is customary to plot the results from fits using
equation 8 in terms of current and volts, rather than power and temperature, but the fitting
is still ultimately to power vs temperature6.

Thinking of the fitting in terms of voltage and current can lead to misconceptions, with
probably the most popular being that in order to constrain β and Go, it is necessary for the
data to include the “downturn” in the load curves (see Fig. 2). Since there is no downturn
in a plot of power vs temperature, it can’t matter at all. What we do need is a large enough
current to make the bolometer temperature cover a useful range.

3.3 Applying the model

So now we have the parameters R∗, Tg, m, Go and β. Assuming that the model produced
good fits, we can now predict the bolometer voltage as a function of current. We start with
an appropriate temperature range, and use equation 8 to give the corresponding powers.

6In a similar manner, if doing a conventional thermal conductance measurement as in Fig. 5 using a
separate heater and thermometer, we could plot the results in terms of the current through the heater and
voltage across the resistor measuring temperature. But we probably wouldn’t.
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Figure 7: Measurements from Fig. 2, also showing fits using the thermal model.

Figure 8: Measured load curves and thermal model fits for another bolometer (HFI CQM
857 GHz SWB S/N 01).

We can then get resistance from equation 2, enabling us to calculate7

V =
√

PR (10)

7Putting equations 10, 8 and 2 together, we can write

V =

√

Go

β + 1

(

T β+1 − T
β+1

0

)

R∗ exp

((

Tg

T

)m)

, (9)

which makes the model look terribly complex. However, since we have determined R∗ and Tg already,
these aren’t fit parameters, and we might as well remove them from the equation before carrying out the fit.
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Figure 9: Values of the thermal model parameter β as a function of stage temperature for
the data in Fig 8.

and

I =

√

P

R
. (11)

Note that since this is a parametric equation, if we want voltage measurements at particular
values of current, rather than the values that we end up with for the chosen values of T ,
we’ll have to either interpolate, or use an iterative technique. This is rarely necessary,
however.

The fits in Fig. 7 show very good agreement with the measurements. This is not always
the case. The culprits are usually non-ohmic effects (Box 1).

There is a subtlety though. It is usual to carry out separate thermal model fits to
each load curve. One can then find good looking fits, but with values of β that vary
systematically by a significant amount from load curve to load curve. This is not in
agreement with the thermal model, since β is supposed to be a constant. An (extreme)
example is given in Figs 8 & 9. While the fits look good, the value of β varies wildly with
temperature. This is telling us that the thermal model is not working well8. We should
therefore be very cautious about applying the thermal model, and indeed for temperatures
other than those measured, it isn’t even obvious what value of β we should adopt. We
need to use a more sophisticated model and attempt to include either electric field effects
or electron-phonon decoupling and see if these improve matters.

An alternative approach to the conventional two-step method outlined here would be
to fit each load curve with R∗ and Tg as adjustable parameters as well as Go and β. It
is impractical to constrain these parameters well enough from a single load curve [3].
However, it can be done if a fit is carried out simultaneously to a set of load curves. This
method has the advantage of not requiring any judgement as to how to determine the zero
bias resistance. However, it will suffer if non-ohmic effects are present, unless they are
also effectively included via extra fitting parameters. This method might even be useful if

8Another clue is that β turns out to be a function of the bias range over which the bolometer is measured
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Figure 10: Measurements from Fig 2, plotted as G = dP/dT as a function of bolometer
temperature.

Figure 11: 100 mK load curve from Fig. 8 and thermal model fit, plotted in G(T ) space.

the optical power is unknown.

3.4 G(T) - method 2

The methods described above are the traditional way to model bolometers. However,
there is an alternative method of deriving G(T ), so long as you are prepared to do a little
numerical differentiation. We can re-write equation 7 as

G =
dP

dT
. (12)

We can then plot G as a function of T for each load curve, and obtain Go and β from a
simple power-law fit. As always, one has to be careful when differentiating real data, and
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some smoothing to remove noise may be necessary. Another problem is that the noise
will blow up for the section where T is barely changing because the bias power isn’t large
enough to cause significant self-heating. It is therefore necessary to exclude this part of
the load curve from the fits. For this reason, it can be easier to do fits using the traditional
method.

However, it is still very useful to plot the data in this form, since it is an excellent way
of comparing different load curves. Since G(T ) depends only on the bolometer tempera-
ture, measurements from different load curves should fall on the same curve. Deviations
tell you either that the model isn’t working properly, or that there is a problem with the
measurements. Generally, failures of the model (electric field effects or electron phonon
decoupling) manifest themselves as a down-turn of G(T ) at the lower temperature end
of each load curve. Other discrepancies are usually measurement problems. An example
is shown in Fig. 10. From this it can be seen instantly that the different load curves are
generally in very good agreement, but there is a hint of deviation at the lower temperature
end of each load curve for the lower stage temperatures. Compare this to Fig. 2, where it
would take a very trained eye to be able to see if the different load curves were consistent
with each other.

The usefulness doesn’t end here. The 100 mK load curve from Fig 8 looks as if the
thermal model fit is quite good. But if the same data and fit is plotted as G(T ) (Fig. 11),
we can see that the fit is actually very poor, even though it looked quite good when viewed
in voltage-current space. We should therefore treat anything obtained from the model for
this bolometer with suspicion. In particular, the value of Go is not going to be the true
thermal conductance.

This is also a very useful method of comparing load curves taken with different (and
even unknown) optical power. Since we are plotting G = dP/dT , any optical power is
constant and therefore doesn’t affect the value we obtain. So a group of load curves taken
at arbitrary optical power and stage temperature should all overlap. This is particularly
useful when comparing load curves taken in two different systems, since they differences
in thermometry are likely to mean that even if an attempt is made to make measurements
at the same temperatures, this will not be the case. With this method, not only do we
not need measurements at the same temperatures, we don’t even need to know what the
temperatures are9.

4 Optical power

So far we have only touched on what happens with optical power present. Obviously our
modelling is not going to be very useful unless we can include this. This section discusses
how the various methods above are affected by the presence of optical power.

4.1 R(T)

Any optical power will raise the bolometer temperature above the heat sink temperature
even at zero bias. Therefore it becomes much harder to determine R(T), and it is best
to use measurements taken with negligible optical power. Since the effect of power will

9We have to believe the temperatures in one system in order to derive R(T ), though
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depend on G, which in turn depends on stage temperature, in principle it would be possible
to obtain an expression for R(T ) by including the optical power as a fit parameter. In
practise it is not easy to get accurate values this way.

4.2 G(T)

As has been mentioned before, adding optical power makes no difference to values for
G(T ), so plots of G(T ) = dP/dT can be used as before. If using fits to the thermal
model, the addition of optical power, Q, changes equation 7 to

P =
∫ T

T0

G.dT − Q, (13)

and equation 8 to

P =
Go

β + 1

(

T β+1 − T β+1

0

)

− Q. (14)

We can then do a non-linear fit including Q can as a fit parameter. However, we must
then supply a value for T0 – we can’t include it as a fit parameter, since T0 and Q are
degenerate. In fact it is a basic principle that an optical load has exactly the same effect
as a change in stage temperature10.

We can see this if we define T ′ such that

Q =
∫ T ′

T0

G(T ).dT. (15)

Then we can rewrite equation 13 as

Q + P =
∫ T

T0

G(T ).dT =
∫ T ′

T0

G(T ).dT +
∫ T

T ′

G(T ).dT (16)

and thus

P =
∫ T

T ′

G(T ).dT. (17)

Comparing with equation 7, we can see that a finite Q is just the same as Q = 0 and
T replaced with T ′. Once consequence of this is that we can obtain a value for Q from
the bolometer temperature at zero bias without needing a full load curve. Note that this
conclusion does not depend on G(T ) having the power-law form assumed in the ideal
thermal model.

Within the thermal model, we can then rewrite equation 15 as

Q =
Go

β + 1

(

T ′β+1 − T β+1

0

)

, (18)

and thus

T ′ =

(

(β + 1)Q

Go

+ T β+1

0

)
1

β+1

. (19)
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Figure 12: Difference in optical power for load curves taken with 77 K and 300 K black-
body loads at 100 mK stage temperature (the bolometer is HFI CQM 100 GHz SWB S/N
08).

4.3 ∆P

There is a further method of obtaining the optical power from a load curve, without using
the thermal model. This method can only determine the difference between optical power
for two load curves, but is nevertheless very useful.

This method relies on the fact that the bolometer temperature is a function of the
bolometer power alone. So if we have two load curves taken at the same stage temper-
ature, and we pick a point on each curve at the same temperature (and thus resistance –
we don’t even need to know the form of R(T )), then the total power (P + Q) must be
the same. Since we know P = V I for each load curve, we can easily calculate the value
of Q. This method will give a value of Q as a function of P . In principle, of course, the
value of Q should be constant. In practise small systematic errors will prevent this from
being the case, and it is necessary to use some judgement to choose a value for Q. An
example is shown in Figure 12. Agreement seems to be better for measurements made
during the same cool-down. The great advantage of this method is that it does not require
the thermal model to hold, or any of the thermal model parameters to be known.

Note that if we fail to have the two load curves at the same temperature, the value of
Q should still be constant, but will be incorrect. If we know Go and β, and have accurate
values for the temperatures, we can correct the value of Q using equation 18.

5 Applying these methods

This section briefly discusses what measurements should be made, and how to interpret
them. When building bolometers for an instrument, there are often (at least) two stages:
– characterisation, where the bolometers are measured in some kind of test cryostat

10So long as electric field effects and electron-phonon decoupling are negligible.
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– a second stage, sometimes referred to as calibration, where they are tested in the instru-
ment they were intended for.

This second stage is likely to be carried out using read-outs optimised for doing obser-
vations rather than characterisation – for example it may be an AC readout, whereas the
characterisation may have been done using a more straightforward DC readout.

5.1 Characterisation

At this stage the game is usually to make sufficient load curve measurements to obtain
the thermal model parameters. This enables us to know if the goals have been met. These
normally include specified values for:
– Go, itself a model parameter
– Optical efficiency – this can be determined from measurements with different optical

loads.
– Detector noise – a value for this can be derived from the thermal model parameters,

though this is not discussed here.
– Speed of response – this requires separate measurements and will not be discussed here

either.
So we need a cryostat which can make measurements in a near negligible optical back-
ground, at various stage temperatures. We call these blanked measurements. The mini-
mum set of blanked measurements required to obtain the thermal model parameters is:
– Load curves at many different temperatures in order to determine R(T ). Since we only

need the zero bias value, these do not need to go over a large bias range, though it is
useful if they do.

– At least one load curve over a large enough bias range so that we can obtain Go and β.
However, if we make all the load curves over a large bias range, this helps ensure the
accuracy of our measurements by looking at the consistency of results. If all is well, we
should obtain the same value of Go for each load curve, and plots of G(T ) should overlap
as discussed earlier.

To obtain optical efficiency, we make measurements with different optical powers,
and calculate Q using one (or ideally more than one) of the methods described above. If
we can then calculate the incident power on the bolometer (or, more usually, the optical
chain), we can calculate the optical efficiency from the value of Q.

5.2 Calibration

In this stage, the bolometers are re-measured in their instrument. Here the goals are
slightly different, and may include:
– Ensuring that the readout system is well understood
– Ensuring that thermal model parameters determined earlier can be used to predict the

bolometer performance
– Measuring the optical efficiency of the bolometers in the instrument
To ensure that the readout system is behaving as expected, we measure load curves and see
if they agree with those taken during characterisation. If not, there is a problem! Since
there may well be doubt over the absolute optical power and even stage temperature,
comparing G(T ) = dP/dT is a very useful technique. It is also useful to be able to show
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Box 4 Suggested further reading

– Sudiwala, Griffin and Woodcraft [3] gives a far more detailed description of the thermal
model than is presented here.

– Grannan, Richards and Hase [1] extends the model to allow for electric field effects in
the thermistor.

– Richards [4] and Jones [5] both describe various aspects of bolometer operation and
modelling.

– Woodcraft et al. [6] demonstrates the application of the thermal model by using it to
characterize a bolometer designed for 100 mK operation.

that the thermal model parameters determined during the characterisation stage can be
used to predict the bolometer performance in the instrument, since it is usually impossible
to make the required measurements to re-characterise the bolometers in an instrument.

Optical efficiency is measured as before. This can be the most important measurement
– even if it turns out that differences in the readout system mean that the load curves do
not look consistent with those during characterization, the chances are that, although not
ideal, this can be lived with. Ultimately, calibration will be done against optical sources,
not using the bolometer model, although having the model is very useful. But optical
efficiency is very important in demonstrating that an instrument will have acceptable per-
formance.

6 And finally...

If all this made sense, and you want to learn more, then you could try the papers listed in
Box 4.
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