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Abstract: A revised version of the Griffin & Holland ideal semiconductor bolometer 
model is presented and its use in determining bolometer properties and parameters from 
experimental load curve measurements is discussed. We show that degeneracy between 
some bolometer parameters can only be broken by model fitting a family of load curves 
over a range of bath temperatures, and that measurements with the bolometer blanked 
(zero absorbed radiant power) are essential for unambiguous determination of the main 
parameters. The influence of measurement errors on parameter recovery is analysed 
using synthetic noisy data sets.   
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1 Introduction 
Low temperature semiconductor bolometers are widely used in ground, balloon, and 
satellite based millimetre and sub-millimetre wave astronomy [e.g., Refs. 1, 2, 3]. 
Silicon nitride micromesh bolometers using neutron transmutation doped (NTD) 
germanium thermistors operating at 100-300 mK are arguably the current mature state-
of-the-art technology [e.g., Refs. 4, 5, 6, 7].  
 
The physical principles of cryogenic semiconductor bolometers have been developed by 
Jones [8], Low [9], and Mather [10, 11]. Based on Mather's non-equilibrium theory, 
Chanin & Torre [12] and Griffin & Holland [13] developed parameterised ideal thermal 
bolometer models to investigate optimisation under different levels of radiant 
background power loading.  This work was extended by Grannan et al. [14] to include 
electrical non-linearities. Whilst these works provide a good theoretical framework for 
bolometer design, the issue of detailed characterisation and performance verification of 
actual devices needs further discussion. To this end, we present a modified form of the 
Griffin & Holland model and discuss its use in characterising actual devices. We use 
synthetic voltage-current data sets to illustrate important aspects of design and 
performance verification, and demonstrate the applicability of an ideal thermal model to 
real bolometers. We also discuss non-thermal electrical effects that might account for 
the departures of real devices from ideal thermal behaviour.  Application of the model 
to the characterisation of a prototype bolometer for the 143-GHz band of the Planck HFI 
instrument is described by Woodcraft et al. [7].  
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2 Bolometer thermal model 

A bolometric detector is shown schematically in Figure 1. A thermistor of resistance R 
and at temperature T is coupled to a heat sink at a bath temperature T0 through a thermal 
link of length L and static thermal conductance GS. A bias current I flows through the 
thermistor, generating a voltage V = IR across it. The bias current is usually generated 
by load resistance RL in series with a voltage source Va. The voltage V is usually 
measured through a low noise voltage amplifier. The total power dissipated in the 
bolometer is W = P + Q where Q is the absorbed radiant power and P = VI is the 
electrical power. The bolometer has heat capacity C(T) (we assume that the thermal link 
has zero heat capacity). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Schematic diagrams of (a) a bolometric detector and (b) the electrical bias 
and measuring circuit. 
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The steady state energy balance equation for the bolometer is  
 
 ( )0TTGW S −= .  (1) 
 
The Griffin & Holland model was based on the non-equilibrium bolometer theory of 
Mather [10] but assumed that the variation of the thermal conductance with temperature 
can be expressed as a power law, GS(T,T0) = GS0(T/T0)β where GS0 is the thermal 
conductance at temperature T = T0. Here, in keeping with Mather's theory, we make the 
physically more realistic assumption, also noted by Murray et al. [15] and Grannan et al. 
[14], that it is the temperature variation of the thermal conductivity, k , of the thermal 
link that is appropriately expressed as a power law:      
 

 ( )
β







=

0
0 T

TkTk ,   (2) 

 
where k0 = k(T0). In other words we take the variation of thermal conductivity with 
temperature across the thermal link into account. Now, 
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where A(x) is the cross-sectional area of thermal link at position x. For simplicity, but 
without loss of generality, we take the cross section to be constant,  A(x) = A.  
Integration of equation (3) then yields 
 

 ( )1
1

   100 −
+

= +βφ
β )(

Tk
L
A

W ,  (4) 

 
where φ = T/T0. From equations (1) and (4), we have 
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where GS0 = k0(A/L) (which can be deduced by taking the limit T → T0 in equation (5) 
above). From equations (1) and (5) we obtain 
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Equation (6) enables us to model the voltage-current (load curve) characteristics of a 
bolometer if we know the temperature variation of the thermistor resistance, R(T). 
 
A variety of doped semiconductors [14, 16] have been used as low temperature 
thermistor materials. The dominant conduction mechanism in these materials is variable 
range hopping between localised sites [17, 18, 19], and in general the resistance of the 
device varies with both applied voltage and temperature [14, 20] 
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where Tg is a material parameter, R* depends on both material and device geometry, L is 
related to the average hopping distance and is in general temperature dependent [7] and 
E is the electric field across the device. In the absence of electrical non-linearities, and 
other effects such as electron-phonon decoupling [20], the thermistor resistance depends 
only on temperature: 
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Within the context of the ideal thermal bolometer model discussed here, we assume that 
the thermistor resistance varies only with temperature as described by equation (8).  
 
The voltage-current characteristic (load curve) of an ideal thermal bolometer can be 
generated by incrementing T from T0 to some value Tmax in equations (6) and (8). For 
given values of β, GS0, Q, R*, Tg, and n, the electrical power P and resistance R(T) can 
be determined. Then  
 
 V  =  [PR(T)]1/2 ,   (9a) 
and 
 I  =  [P/R(T)]1/2.  (9b) 
 
Other important quantities for specifying bolometer performance are as given below. 
The temperature coefficient of resistance of the bolometer, α, is given by 
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The dynamic impedance, Z, is given by  
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where Gd = dW/dT is the dynamic thermal conductance at temperature T: 
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and Gd0 = Gd(T0) = (A/L)k0. We note that Gd0 = GS0  - i.e. the static and dynamic thermal 
conductances are the same at the bath temperature. The DC responsivity, S, is [8] 
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or equivalently, 
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where Ge, the effective thermal conductance, differs from Gd due to the effect of electro-
thermal feedback [10]: 
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Finally, the responsivity of the ideal bolometer varies with the angular frequency of 
modulation of the incident radiation, ω, as: 
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where the effective thermal time constant, τe , is given by 
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In the Appendix, these equations are used to express the responsivity in terms of the 
parameters β, n, Tg, R*, GS0, and Q. The Appendix also examines the various 
contributions to the bolometer NEP and likewise relates these to the above parameters, 
and, for completeness, gives the modified forms of the equations used by Griffin & 
Holland [12] for bolometer optimisation, taking into account equation (2). 
 
 



3 Bolometer characterisation 

As discussed above, for a given a set of values for the parameters (β, n, Tg, R*, GS0, and 
Q) it is a simple matter to model a load curve at a bath temperature T0 using equations 
(6), (8) and (9). Similarly, the responsivity and NEP as a function of bias current can 
also be also be modelled using equations (13), (14), (A10), (A11) and (A15). For the 
purpose of illustration, we consider a bolometer with the parameter summarised in 
Table I:   
 

β 1.3 
n ½ 
Tg 15 K 
R* 100 Ω  
GS0 120 pW K-1 at T0 = 100 mK 
Q 0 (blanked - i.e. no radiant loading) or 0.5 pW (non-blanked). 

 
Table I:  Parameter set used for model bolometer 

 
For bolometers that use neutron-transmutation-doped germanium:gallium (NTD-Ge) 
thermistor elements in which the dominant conduction mechanism is variable range 
hopping, the value of n = ½ has been found to produce good fits to the R-T variation of 
over the range of temperatures of interest here and over several orders of magnitude in 
resistance [16,20]. Ideally, β  = 1 for a metallic thermal link, or 3 for a crystalline 
dielectric link [21];  real bolometers may consist of a number of components with 
differing properties and so can exhibit values of β between these limits.   
  
A typical set of measurements needed to characterise the performance of both the 
bolometer and its associated optical components comprises: 
 
(i) blanked load curves, in which sets of voltage-current characteristics of the 

bolometer are measured for a variety of bath temperatures, T0, ensuring that there 
is no power loading on the bolometer by external radiation; 

(ii) non-blanked load curves, for which the bolometer views a controlled amount of 
external radiation (these are again recorded at various bath temperatures);  

(iii) speed of response measurements, in which the frequency response of the 
bolometer to a modulated radiant source is recorded over a range of electrical 
bias voltages and for a variety of bath temperatures;  

(iv) bolometer noise measurements on the bolometer, both blanked and non-blanked.  
 
The goal of bolometer characterisation is to determine experimentally the parameter set 
of the bolometer.  
 
 



4 Model fitting of a single load curve 

To understand the importance of each of these data sets, it is worth considering how 
much can be learned just from a single load curve measurement. The measured load 
curve can be expressed as R vs. P. From equations (6) and (8), and using n = ½, 
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We presume to know only T0. Equation (17) is linear in ln[ln(R/R*)], with slope  
m = -(2β + 3) and intercept c = ln[2GsoTg

β+1/T0
β], only for the correct value of R*. Thus, 

a graph of χ2 vs. R* from a linear least squares fit enables us to determine both R* and β. 
This is illustrated in Figure 2 for both blanked and non-blanked synthetic load curves at 
T0 = 100 mK using the standard parameter set listed above. We have determined the 
derivative numerically from the modelled data by differentiating an interpolation 
function of the R vs. P curve, just as we would for a measured load curve. The optimum 
recovered value for R* is obtained by finding the minimum of the interpolated χ2 vs. R* 
curve. From Figure 2a we find an optimum value of R* = 100 Ω  for both of the synthetic 
load curves as expected. Using this optimum value of R* in equation (17) and applying a 
linear least squares fit, the best fit values of the slope and intercept can be found. Figure 
2b shows that both synthetic load curves yield identical values of m = 5.6 and c = 14.7. 
From m, we determine β = 1.3 as expected. For the blanked load curve, in the limit P → 
0, the thermistor temperature T → T0 (equation 1) and R(T, P → 0) = R(T0) which can 
be measured from the R-P curve. Thus, Tg can be deduced from equation (8) and hence 
GS0 from the value of the intercept c. From our synthetic blanked load curve, R(T, P → 
0)  ≈  2.08 x 107 Ω , giving values of Tg = 15 K and GS0 = 119.9 pW K-1 as expected. It is 
not possible to determine Tg and GS0 from a non-blanked load curve in this fashion 
because the thermistor temperature T > T0 at P = 0.  For the particular non-blanked load 
curve used here with Q = 0.5 pW, we find R(T, P→0) ≈ 1.6 x 107 Ω . 
 
In principle, therefore, all of the bolometer parameters can determined from a single 
blanked load curve, and R* and β can be determined even if it is not known that the load 
curve was blanked. In practice equation (17) is difficult to apply because it requires 
extremely low-noise data. The double logarithm means that the method is insensitive to 
R*.  Synthetic data show that the load curves need to be measured to better than 0.05% 
accuracy and with a sampling interval small enough to enable the numerical derivative 
to be calculated reliably. This is illustrated for our example bolometer with synthetic 
blanked load curves calculated at T0 = 100 mK with noise added at the 0.01% and 0.1% 
levels for each voltage and current datum. Figures 3a and 3b show a typical χ2 vs. R* 
curve, and the least squares fit to equation (17) using the optimum value of R* derived 
from it, respectively, for the case of  0.01% noise level. The average from a set of five 
such synthetic load curves yielded R* = 95 ± 8.2 Ω , m = 5.63 ± 0.04, and c = 14.8 ± 
0.16. From these values we find β = 1.31 ± 0.02, Tg = 15.1 ± 0.2 K, and GS0 = 120.6 ± 
0.8 pW K-1, which agree very well with the original parameter set. Figure 3c shows a 
typical χ2 vs. R* curve for a  0.1% noise level case giving an optimum value of R* = 



46.9 Ω . The least square fit using this value is shown in Figure 3d from which we find β 
= 1.5, Tg = 16.9 K, and GS0 = 127.5 pW K-1.  The relatively large differences between 
these best fit values and the actual parameters mean that these numbers would be 
unsuitable for predicting the bolometer behaviour at other base temperatures. We have 
been unable to find a smoothing algorithm or other method to make the numerical 
determination of the derivative more accurate.  
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Figure 2:  (a) χ2 vs. R* for fits to equation (17) for data from synthetic load curves 
generated using the standard parameter set at T0 = 100 mK. Lighter curve: Q = 0 
(blanked); heavier curve: Q = 0.5 pW (non-blanked). Both curves show a minimum in 
χ2 at a “best” value of R* = 100 Ω  as expected. (b) The load curve data plotted 

(a) 

(b) 
 



according to equation (17) using the “best” value of R* = 100 Ω  as found above. Lighter 
line: Q = 0; heavier line (which has been displaced by 0.2 units in the vertical scale for 
clarity) Q = 0.5 pW. Both curves have the same slope and intercept. 
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Figure 3: (a) χ2 vs. R* for fits to equation (17) for data from a synthetic load curve with 
0.01% added noise generated using the standard parameter set at T0 = 100 mK and Q = 
0. The “best” value of R* = 103.5 Ω . (b) The load curve data used in (b) plotted 
according to equation (17) using the “best” value of R* = 103.5 Ω  as found above.  
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Figure 3:  (c) χ2 vs. R* for fits to equation (17) for data from a synthetic load curve with 
0.1% added noise generated using the standard parameter set at T0 = 100 mK and Q = 0. 
The “best” value is R* = 47 Ω; (d) the load curve data used in (c) plotted according to 
equation (17) using the “best” value of R* = 47 Ω  as found above. 
 
The other drawback with this approach is that from a single load curve it is not possible 
to say that the bolometer is truly running blanked. Thus, if there were any stray radiant 

(c) 

(d) 
 



power absorbed during the measurement of a nominally blanked load curve, the derived 
values of Tg and hence GS0 would be erroneous.  
 
In the following sections we show how these difficulties can be avoided by applying a 
non-linear fit to families of load curves recorded under different radiant loading 
conditions over a range of bath temperatures. 
 
 

5 Non-linear fitting of load curves 
Equations (6) and (8) can be combined into a form suitable for non-linear curve fitting: 
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It is important to realis e that one cannot simply fit X, Y, T0, Tg, R* and Q to measured 
data and expect a sensible result. (Remember that although T0 is experimentally 
measured, in practise because of experimental and/or calibration errors we might wish 
to fit T0 to the load curve data). The reason is that X, Y, T0, Tg, R* and Q are not 
independent parameters. For blanked load curves (Q = 0), T0 is a function of Tg, R0 and 
R*: 
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where R0 is the thermistor resistance at zero bias current (and therefore zero electrical 
power).  When Q is non-zero, it can be expressed as a function of X, Tg etc.: 
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Furthermore, the parameter values for best fit are not unique. For example, if a set of 
parameters {β, Tg, R*, GS0, T01} fits a blanked load curve, the parameter set {β, Tg/f, R*, 
fGS0, T02} where f = T01/T02 will fit the load curve equally well. For non-blanked load 
curves the problem of degeneracy is compounded if we also attempt to fit Q as a free 
parameter. Mather [10] has already noted that the effect of dissipation of the absorbed 
radiant power in the bolometer is equivalent to that of operating the bolometer from a 
higher bath temperature but with less radiant power. More specifically, a non-blanked 
load curve defined by the parameters {β, Tg, R*, GS0, T0, Q} is identically reproduced by 
the parameter set {β, Tg, R*, GS0(f), fT0, Q(f)} where 
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We note that for some range of f, Q(f) is in fact negative which, although completely 
non-physical, actually reproduces the original load curve exactly. We note further that 
equation (22a) is completely consistent with a change in bath temperature and that Gd0 = 
GS0 at the new bath temperature. 
 
We will return to this issue of degeneracy when discussing thermometry and non-
blanked load curves but it is already clear that some parameters need to be determined 
prior to attempting a least squares fit. Fortunately, the family of blanked load curves 
affords the prior determination of both Tg and R*. 
 
 

6 Parameter derivation by fitting of load curve families 
This section demonstrates a procedure for deducing the bolometer parameter set using 
load curve families recorded over a range of bath temperatures. We illustrate the 
procedure using noise free synthetic load curves generated using our s tandard parameter 
set. Practical issues are discussed in Section 7 using synthetic load curves with 
simulated noise added. In order to be representative of real experimental data, each 
synthetic load curve consists of a set of thirty current-voltage data points. Furthermore, 
the data points are more densely spaced at low bias currents, as is necessary [7] in order 
that a) the important quantity, R0, can be more accurately measured and b) there be a 
sufficient number of data points in the linear portion of the load curve. 
 
6.1   Blanked load curves 

The importance of acquiring a good set of blanked load curves over a range of bath 
temperatures cannot be overstated as the data from this family provide the best 



estimates of R* and Tg  through plotting ln[R0(T0)] vs. 1/T0
n. For bolometers using  NTD-

Ge thermistors, this curve is expected to be linear, of slope Tg
n and intercept ln(R*). 

Departures from linearity will occur if the bolometer absorbs stray power, either due to 
a radiation leak or due to microphonic, electrical, or RF pickup. This provides a good 
test for the experimental setup. Figure 4 shows the curves determined from noise-free 
synthetic blanked load curves, and for synthetic load curves where a small stray power 
component, Qs (= 0.05 pW, 0.1 pW and 0.2 pW), has been introduced. It is seen that the 
method not only determines R* and Tg to very high accuracy for the case of the blanked 
load curves, but that for typical 100-mK bolometers, it is sensitive to stray power down 
to about 0.05 pW. We note that to detect departures from linearity in practice, we should 
extrapolate the linear fit to data points for high T0, where the effect of stray power is 
minimal, to the lower values of T0. 
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Having found R* and Tg, and using equation (20), it is easy to demonstrate that a non-
linear fit of the blanked load curves to equation (18) converges to determine X and Y 
(and hence GS0 and β) to high accuracy from a wide range initial guesses for X and Y.  A 
synthetic non-blanked load curve and fit for T0 = 100 mK is shown in upper trace of 
Figure 5. 
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Figure 5:  Synthetic noise-free load curves at T0 = 100 mK: blanked (squares) and Q = 
0.5 pW (diamonds). The lines are the model fits to the data. 

 
6.2   Non-blanked load curves 

Families of non-blanked load curves (Q > 0) are important because not only do they 
allow a measurement of the efficiency of the optical chain, but also because these data 
provide a means of checking the consistency of bolometer parameters. For these 
measurements, the beam of the bolometer optic is filled with radiation from a black 
body source at temperature Trad. This is normally filtered to allow only radiation in the 
desired passband through, and reduced in intensity using neutral density filters to a level 
comparable to that expected in actual use. This results in a controlled amount of radiant 
power Q(Trad) being absorbed by the bolometer. Again, families of load curves are 
measured over a range of bath temperatures. Trad is typically 300 K for a black body 
source at room temperature or 77 K for a black body source at liquid nitrogen 
temperature. Woodcraft et al. [7] describe such measurements in detail.  
 
The fitting procedure has been tested with synthetic noise-free non-blanked load curves 
calculated using the standard parameter set and Q = 0.5 pW. We assume that R* and Tg 
have been determined from the family of blanked load curves (they cannot be 
determined from the non-blanked family). For the non-blanked load curves we combine 
equations (18) and (21a) to write P(R) as 
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X and Y can be readily fitted to equation (23). Again, the fits converge from a wide 
range of starting values for X and Y.  The lower trace in Figure 5 shows a synthetic load 
curve together with the fit for T0 = 100 mK.  
 
Tests for internal consistency of the model are then:  
 
(i) the calculated value of Q should be the same for all non-blanked load curves 

within a family recorded using a particular source temperature Trad; 
 
(ii) the deduced values of β and GS0 should be the same for the blanked and non-

blanked load curves recorded at the same bath temperature; 
 
(iii) a curve of ln[GS0(T0)] vs. ln[T0] should yield a straight line of slope β.  
 
With synthetic noise-free data, the parameter recovery is, as expected, excellent. The 
following section describes how well this method works for synthetic load curves with 
noise added.   
 
 

7 The influence of measurement errors on derived parameters  
When attempting to fit real load curves, two important aspects must be considered: 
errors in the bath thermometer calibration and noise associated with measuring the load 
curves themselves.  
 
7.1   Errors in the bath temperature, T0 

In order to plot ln[R0(T0)] vs. 1/T0
1/2, curves from a family of blanked load curves we 

clearly need a measure of the bath temperature T0. In practice, a calibrated thermometer 
on the bolometer cold stage provides this. Errors in the calibration of this thermometer 
as well as errors in the measurement of R0 will result in corresponding errors in the 
values of R* and Tg. Before looking at how these errors affect the fitted values of GS0 
and β within families of load curves, we discuss a more subtle point: namely, what 
value of T0 should we use in the fits? 
 
The obvious answer would be to use T0 as measured by the calibrated thermometer. We 
assert here that the best approach for a consistent analysis of families of load curves is, 
in fact, to use the bath thermometer to determine the best estimates for R* and Tg from 
the  blanked load curves as described above; and then, having found R* and Tg, to use T0 
as determined by equation (20). By doing this, random errors in both the calibration of 



the stage thermometer and the measurements of R0 are averaged over the data set. We 
are then effectively using the thermistor chip on the bolometer itself, for which equation 
(8) is known to be very good, as a sensitive heat bath thermometer.  
 

7.2   The effects of errors in Tg and R* on β and GS0 

It is easy to see the effect of an error in Tg on the best fit values of β and GS0. If our 
deduced value of R* is accurate, then any error in the value of Tg amounts to a 
systematic multiplicative error in thermistor temperature. That is, if we deduce a value 
Tg

true/f then equation (20) gives a bath temperature T0/f. Likewise, the calculated 
thermistor temperature for any point on the load curve will be T/f instead of T.  The net 
effect of this is that the non-linear fit then yields the values β and fGS0 with as good a fit 
as would have resulted had we been absolutely accurate in determining Tg. We note that 
equation (12) would also hold for these parameter values. 
 
We demonstrate the effect of an error in R* using the set of synthetic noise free blanked 
load curves generated using the standard parameter set. We use the exact value of Tg = 
15 K but a range of values for R* (80, 90, 100, 110, and 120 Ω). Table II lists the values 
of T0 calculated using equation (20) and the fitted values of β and GS0 for synthetic load 
curves generated for bath temperatures of 100 mK, 170 mK and 250 mK. The important 
points to note are that if we underestimate R*, the method returns a lower value for T0 
and higher values for GS0 and β, with β values increasing steadily with increasing base 
temperature. However, because the bolometer temperature depends only logarithmically 
on R* we find that even for the load curve calculated with a base temperature of 250 
mK, where the fits are worst, an error of 20% in R* only amounts to an error of 5.5% in 
T0. The corresponding errors in both GS0 and β are both 8.4%. 
 

 100 mK 170 mK 250 mK 
R* 
Ω  

T0 
mK 

β GS0 
pW K-1  

T0 
mK 

β GS0 
pW K-1  

T0 
mK 

β GS0 
pW K-1 

80 96.5 1.37 126.3 162.2 1.39 255.6 236.2 1.41 427.8 
90 98.3 1.33 123.0 166.3 1.34 246.9 243.4 1.35 410.3 
100 100 1.30 120.0 170.0 1.30 239.3 250.0 1.30 395.1 
110 101.6 1.27 117.4 173.5 1.26 232.6 256.3 1.25 381.6 
120 103.1 1.24 115.1 176.8 1.23 226.5 262.2 1.21 369.6 

 
Table II: Calculated values of T0 values from equation (20), and fitted β and GS0 values 
tabulated for a range of assumed R* values for synthetic noise-free blanked load curves 
generated at base temperatures of 100 mK, 170 mK and 250 mK using the standard 
parameter set. Tg is taken as 15 K in the fits and calculations. 
 
It is interesting to note that even though the fitted load curves generated using the 
parameters listed in Table II with Tg = 15 K are such that each they overlay the synthetic 
data well enough to be more or less indistinguis hable, as the error in R* increases so 
does the value of χ2 for the fit. This suggests a strategy to improve our knowledge of R*: 
plot χ2 vs. R* and use that value of R* for which χ2 is a minimum. Ideally, all load 
curves would return the same optimum value for R*. However, it is easily demonstrated 



that although a minimum in χ2 is found for synthetic noise free load curves, in general 
no such minimum is found when noise is introduced even at only the 1% level.   
 
7.3   Noisy synthetic load curves 

 We have seen that the methods described above work extremely well for synthetic 
noise free load curves. We now use families of synthetic blanked and non-blanked load 
curves with noise added at the 1% and 10% levels to test the applicability of the method 
to real data. Synthetic load curves were generated using the standard parameter set for 
range of bath temperatures T0gen = {70 mK, 80 mK, … 250 mK.} For comparison, 
Figure 6 shows a 100-mK synthetic blanked load curve with 10% noise together with an 
experimentally measured blanked load curve for a prototype Planck HFI bolometer at T0 
= 98.5 mK (the solid lines are the fitted load curves, see below).  It is clear that, 
systematic errors notwithstanding, a 10% noise level would represent poor data. 
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Figure 6:  A synthetic blanked load curve with 10% noise generated using the standard 
parameter set at T0 = 100 mK (diamonds) compared to a measured blanked load curve 
for a prototype Planck HFI bolometer, at T0 = 98.5 mK (squares). The lines are fits to 
the data.  
 
7.3.1 Tg and R* 

Figure 7 shows ln[R0] vs. 1/T0noise
1/2 curves for the synthetic 1% and 10% noise level 

blanked load curve data. The bath temperature used in this plot is T0noise = T0gen + ∆T0, 
where T0gen is the temperature at which the load curve is generated and ∆T0 is a random 
temperature fluctuation in the range ±1 mK. This would correspond to using the bath 
temperature as measured by the calibrated stage thermometer with a calibration 
error/noise level of  ±1 mK. R0 is estimated by averaging the resistance values of the 
first five data points from the load curve, over which the electrical power dissipation in 
the thermistor is sufficiently small that its resistance should remain essentially constant. 
We find that a linear fit yields values of {Tg = 15 ± 0.005 K, R* = 100 ± 0.2 Ω} for 1% 



noise and {Tg = 15.1 ± 0.09 K, R* = 96.3 ± 3 Ω} for 10% noise. Thus, Tg and R* are 
recovered to good accuracy (approximately 1% and 4%) even for noise levels of 10% 
on the load curves.     
 
7.3.2 GS0 and β  from blanked load curves 

For blanked load curves, assuming that we have a measure of Tg and R*, and setting Q = 
0, the parameters {T0, GS0, β} are independent. For the noise free synthetic blanked load 
curves we were able to calculate T0 from R0 using equation (20) confident that the value 
will be accurate. For noisy load curves, we have two options: either use R0 in equation  
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Figure 7: ln(R0) vs. 1/T0noise
1/2 curves for synthetic blanked load curves with 1% added 

noise (diamonds) and 10% (squares). The 10% noise curve has been offset 0.5 units in 
the vertical direction for clarity. The lines are linear fits to the data.  

 
(20) to calculate a value of T0 to use in fits with {GS0, β} as free parameters, or fit {T0, 
GS0, β} directly. We use the first of the two methods for the following reason: the best 
estimates for {Tg, R*} have been deduced using R0 and T0noise. Thus, the value T0 given 
by equation (20) is the value most consistent with these Tg and R* estimates. Fitting T0 
would return a value inconsistent with these {Tg,, R*} values. It might be argued that 
having found a set of fitted T0 values, these be used in the ln[R0(T0)] vs. 1/T0

1/2 plots to 
re-estimate {Tg, R*} and the process iterated. However, it is not clear that the process 
converges. In practice, fitting of synthetic non-blanked load curves suggest that the T0 
values found by the two methods are close enough to give identical {GS0, β} values to  
approximately 1% even for load curves with 10% noise. 
 
Table 2 lists the calculated bath temperatures, T0, and the fitted β and GS0 values for 
both the 1% and 10% noise level families of blanked load curves. Also listed in Table 2 
for the 10% noise level family of load curves are the values if T0 is fitted together with 



GS0 and β  rather than calculated from equation (20). The values demonstrate that the 
two methods yield more or less the same results. Figure 8 shows ln(GS0) vs. 
ln[T0/T0(100 mK)] curves, where T0(100 mK) is the calculated bath temperature for the 
100 mK load curves. A linear fit to these curves yields β = 1.304 ± 0.005 and GS0(100 
mK) = 120.2 ± 0.25 pW K-1 for the 1% noise data, and β = 1.26 ± 0.06 and GS0(100 
mK) = 121.5 ± 12 pW K-1 for the 10% noise data. These “global” values for GS0 and β 
are in good agreement with those used to generate the load curves.  
 

 1% Noisea 10% Noisea 10% Noiseb 

T0gen T0 β GS0 T0 β GS0 T0 β GS0 

mK mK  pW K-1 mK  pW K-1 mK  pW K-1 

70 70 1.31 74.9 70.2 1.27 78.7 70.4 1.27 79.7 
100 100 1.29 120.4 99.9 1.44 115.2 99.9 1.45 113.3 

150 150 1.31 202.8 148.5 1.14 216.0 150.4 1.10 228.4 
200 200 1.30 296.0 198.8 1.44 289.0 199.3 1.43 291.7 

250 250 1.28 397.7 251.2 1.70 326.5 240.5 1.86 225.1 
 

a  β and GS0
 fitted with T0 calculated using equation (20b) 

b T0, β and GS0 fitted 
 
Table 2. Calculateda and fittedb values of T0, and fitted values of GS0 and β tabulated for 
two families of synthetic noisy blanked load curves generated using the standard 
parameter set at bath temperatures of T0gen. 
 
7.3.3 GS0, β and Q from non-blanked load curves 

When faced with the task of fitting load curves with Q > 0, it is tempting to fit the data 
with T0, GS0, β, and Q as free parameters - see, for example, Naylor et al. [22].  We have 
shown in Section 6, however, that T0, GS0, and Q are not independent. With the 
synthetic noise-free non-blanked load curves of Section 6.2 we implicitly assumed 
prefect calibration of the bath thermometer and thus knew T0, from which Q could be 
determined from equation (21a). Thus, we needed to only fit GS0 and β to the load 
curves. 
 
With real data, if we ensure that the family of non-blanked load curves is recorded at the 
same set of bath temperatures as the family of blanked load curves (see Woodcraft et al. 
[7] for experimental details), then we can use those values of T0 as determined by R*, Tg 
and R0 for the blanked load curves. Having fixed T0 thus, we can either fit the data to 
{X, Y, Q} (and hence {GS0, β, Q}) in equation (18), or we can determine Q a priori and 
fit the data to {GS0, β}. We can determine Q a priori in the same fashion as with the 
noise-free load curves: i.e., use R0 in equation (21a) and fit {X, Y} to equation (23). 
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Figure 8:  ln(GS0) vs., Ln[T0/T0(100 mK)] curves from fitted {β, GS0} parameters for 
blanked synthetic load curves. Circles and dashed line: 1% noise; squares and solid line: 
10% noise. 
 
 
Ideally both methods would return the same Q and the {GS0, β} values would be 
consistent with those found for the family of blanked load curves. 
 
These methods are demonstrated using families of synthetic non-blanked load curves, 
generated using the standard parameter set and Q = 0.5 pW, with 1% and 10% level 
added noise. Figure 9 shows the value of Q returned. It is seen that for both 1% and 
10% level noise, using R0 and fitting {X,Y} is marginally more accurate than fitting Q 
directly. With both methods, the value of Q is closer to the expected 0.5 pW for load 
curves generated at lower bath temperatures, which are more susceptible to the effect of 
radiant power loading. It is seen that for parameter set, the values of Q returned from the 
10% noisy load curves become unreliable at bath temperatures much above 150 mK. 
Figure 10 shows that even with the large errors in Q at the higher bath temperatures, the 
{GS0, β} values returned by the fits from both methods are in good agreement with 
expectations. These are summarised as {β, GS0} = {1.31 ± 0.006, 119.5 ± 0.4 pW K-1} 
and {1.34 ± 0.07, 122.3 ± 4.5 pW K-1} obtained by fitting Q as a free parameter for the 
1% and 10% noise level load curves, respectively, and {1.31 ± 0.005, 119.6 ± 0.3 pW 
K-1} and {1.34 ± 0.06, 122.0 ± 3.8 pW K-1} obtained by fitting {X, Y} to equation (23).   
 
A second way to determine Q is to note that if two load curves are measured at the same 
base temperature and are looking at black body radiation from sources at temperatures 
Trad1 and Trad2, then: 
 



 ( ) ( ) ( ) ( )1212 radradradrad R,TPR,TPTQTQ −=− . (24) 
 
In particular, if the first load curve is measured with the bolometer blanked, then 
 
 ( ) ( ) ( )R,blankPR,TPTQQ radrad −== 22 . (25) 
 
Ideally, equation (25) would return the same value of Q for all values of R accessed by 
both P(R) curves. With real noisy data, we would use the average value Q over the 
range R.  This can be conveniently found by fitting both the blanked and non-blanked P-
R data to a series expansion of the form 
 

 ( ) ( ) ∑
−=

=≈

m

mj

j
j RARFRP , (26) 

and calculating 
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where (Rmax, Rmin) is the range of R common to both load curves. Equation (26) fits the 
load curves very well with m = 4 over the bath temperature range 70 - 250 mK 
considered here. Having calculated Q , it can be used directly in equation (18) to fit {X, 
Y} as the only free parameters. The advantage of this method is that it uses the entire  
load curve to estimate Q. However, as Figure 11 shows, the values of Q  found in this 
way are not as precise as for the other two methods described above. This is not 
surprising since effectively the errors in two load curves contribute the error in Q .  
 
 

8 Responsivity and NEP 

The DC responsivity is defined by equations (13) and (14). It can be estimated from the 
low frequency limit of the speed of response measurements (see Ref. 7 for experimental 
details). Because it is difficult to have precise knowledge of the modulated power, what 
we actually obtain from these measurements is the normalised responsivity.  
 
A second way of estimating the responsivity is by measuring two non-blanked load 
curves, one with the bolometer viewing a black body source at room temperature (300 
K), the other viewing a black body source at liquid nitrogen temperature (77 K). We can 
use equation (24) and generalise equation (26) to measure the difference ∆Q between 
the two load curves. From the two load curves, we can measure the resultant change in 
voltage ∆V(I) and thus estimate the responsivity: 
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Figure 9:  Q vs. T0 for non-blanked noisy synthetic load curves. Open diamonds and 
open squares: using equation (23) for 1% and 10% noise load curves, respectively. Solid 
diamonds and solid squares: fitting Q as a free parameter for 1% and 10% noise load 
curves respectively (these are offset one by unit in the vertical axis for clarity.) 
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Figure 10:  ln(GS0) vs., ln(T0/T0(100 mK)) curves from fitted {β, GS0} parameters for 
synthetic non-blanked load curves. Circles and dashed line: 1% noise and fits using 
equation (23); triangles and solid line: 10% noise and fits using equation (23); squares: 
10% noise and fitting Q as a free parameter. 
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Figure 11:  Q vs. T0 for non-blanked noisy synthetic load curves using equation (26). 
circles: zero noise; triangles: 1% noise; squares: 10% noise.  
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We stress that equation (27) will always underestimate the responsivity to some degree: 
by definition responsivity is the small signal response whereas neither ∆V nor ∆Q (even 
with heavy filtering) are necessarily small in this method.  
 
Our measurements on real bolometers [5, 7] show that not only does the ideal thermal 
model fit the load curves very well, but that both the normalised responsivity and the 
absolute responsivity estimated by equation (27) are also well reproduced. This 
demonstrates the validity of our experimental technique, but should it increase our 
confidence in the parameter set found by these methods?  The answer is, unfortunately, 
no. It is clear from equations (13) and (14) that the responsivity depends only on the 
shape of the load curve. Thus, any parameter set that describes the load curve accurately 
will give the same responsivity. This can be seen in Figure 12, which shows 
responsivity curves, S(I), for three parameter sets {T0, R*, Tg, β, GS0, Q} = {100 mK, 
100 Ω , 15 K, 1.3, 120 pW K-1, 0.5 pW}, {70 mK, 100 Ω , 15 K, 1.3, 75.5 pW K-1, 3.42 
pW} and {100 mK, 50 Ω , 20 K, 1.515, 80 pW K-1, 2.28 pW}, all of which describe the 
same load curve with good accuracy. The three responsivity curves corresponding to the 
three parameter sets overlay extremely accurately. Similarly, the forms of equations 
(A10), (A11) and (A12) for the total intrinsic NEP suggest that any parameter set 
describes the load curve well, will also give the same NEP(I) curve.    
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Figure 12: Calculated optical responsivity vs. bias current for the three parameter sets 
{T0, R*, Tg, β, GS0, Q} = {100 mK, 100 Ω , 15 K, 1.3, 120 pW K-1, 0.5 pW}, {70 mK, 
100 Ω , 15 K, 1.3, 75.5 pW K-1, 3.42 pW} and {100 mK, 50 Ω , 20 K, 1.515, 80 pW K-1, 
2.28 pW}. The first two curves overlay exactly (lower curve), the third (upper curve) 
almost so. 
 
 

9 Departures from the ideal thermal model 
A critical examination of experimental results and model fits presented by Sudiwala et 
al. [5] and Woodcraft et al. [7] suggests a departure from ideal thermal behaviour NTD-
Ge bolometers at bath temperatures below about 100 mK. This cannot be accounted for 
consistently by invoking only the electric field effect described by equation (7). It is 
possible that the departures are due to a combination of factors, such as the electric field 
effect, electron-phonon decoupling [20], or thermal drift of the heat bath and amplifier 
gain errors, all which become more acute at lower bath temperatures. These issues will 
be addressed in future modelling and experiments. 
 
 

10 Conclusions 

We have revised and extended the Griffin & Holland ideal thermal model for NTD 
bolometer behaviour and presented a method by which bolometer parameters can be 
extracted from experimental data. Problems of bolometer characterisation resulting from 
parameter degeneracy have been discussed. We have demonstrated how these problems 
can be overcome through measuring families of load curves over a range of bath 



temperatures. The importance of a family of blanked load curves for the determination 
of R* and Tg cannot be over-stressed. We have shown that from this family of blanked 
load curves GS0 and β can obtained through non-linear fitting of R-P curves. Using this 
knowledge of R* and Tg families of non-blanked load curves then serve as a check for 
consistency by comparing the values of GS0 and β obtained from fitting these load 
curves to those obtained previously. A further test of consistency is afforded by the 
values of absorbed radiant power derived from these fits. We have shown that whereas 
optical responsivities do not serve as a further test for consistency, that NEPs do. 
Finally, it has been shown that parameter recovery is possible to reasonable accuracy 
even from relatively noisy data sets. 
 
The final assessment of the applicability of the ideal thermal model in describing real 
devices can only be validated by experimental measurements. The results presented by 
Woodcraft et al. [7] for two such devices, and earlier results by Sudiwala et al. [5], 
indicate that the model is able to describe real devices over useful temperature ranges. 
 

 
Appendix  

We reformulate the important equations of Griffin & Holland taking into account the 
power law variation of the thermal conductivity rather than the thermal conductance. 
We define 
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Equations (6) and (10) can be written as: 
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 For infinite load resistance equations (13) and (14) become: 
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A.1    DC responsivity 
 
Combining equations (11), (13), (A1) and (A2) the DC responsivity can be expressed in 
terms of bolometer parameters as 
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For infinite load resistance (i.e., constant current bias), this reduces to 
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Equation (A7) is the revised form of Griffin & Holland’s equation (18). 
 
A.2   Variation of responsivity with background power 
 
Griffin & Holland investigated the variation of responsivity with background power 
normalised to the responsivity of the bolometer operating under some loading Qa for the 
special case of Qa=0. For the more general case of Qa > 0, but still with infinite load 
resistance, we find  
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where γa and φa define the initial operating point of the bolometer with responsivity Sa, 
and γ and φ define the new operating point with responsivity S. Setting γa = 0 in 



equations (A8) and (A10) yields the revised forms of Griffin & Holland’s equations 
(25) and (26). 
 
A.3   Noise Equivalent Power 
 
The intrinsic NEP of  an ideal thermal bolometer is given by  
 

 222
PJ NEPNEPNEP += ,                                                      (A10) 

 
where NEPJ is the Johnson noise component and NEPP  is the phonon noise component. 
Following the non-equilibrium noise analysis of Mather [10], these components can be 
expressed as 
 

 
( ) [ ]1/2 22

2

2
2
J 1 τω++=

RS
ZRkTNEP   

 
( ) [ ] 2122

1
22

112

S0
2

0 1

1
1

4
/

n

n

n

GkT τω

β
φ

δ

φ
β

β
+































−

+
−

=
+

+++
,                           (A11) 

 
where τ = C/Gd is the thermal time constant; and  
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where θ < 1 and accounts for the temperature gradient between the bolometer element 
and the thermal bath. If t and g(t) are the temperatures and thermal conductances, 
respectively, along the length of the thermal link, then 
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Integrating equation (A13) gives 
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from which, together with equation (A12), we can obtain 
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Equations (A11) (with ω = 0) and (A15) are the revised forms of Griffin & Holland’s 
equations (19) and (20). 
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