Thermal conductance at millikelvin temperatures of woven ribbon cable with phosphor-bronze clad superconducting wires

Adam L. Woodcraft*1,2, Guglielmo Ventura,3,4 Valentina Martelli,3,5 and Wayne S. Holland2
1SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
2UK Astronomy Technology Centre, Blackford Hill, Edinburgh EH9 3HJ, UK
3INFN, Section of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Florence, Italy
4Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Florence, Italy
5LENS, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy

(Dated: June 3, 2010)

Woven Nomex® ribbon cables made up with superconducting niobium titanium wire are used at millikelvin temperatures in many large cryogenic instruments. It is important to know how much heat in transmitted down such cables. However, the conductivity of the materials used is not well known. Another problem is that the wires are normally clad with alloys which exhibit some magnetism. This is a potential problem for instruments employing superconducting detectors. A safe non-magnetic alternative to the usual materials is phosphor-bronze clad niobium-titanium wiring. However, there is little experience with such wires. We have therefore measured the conductance of a ribbon cable made up with these wires. The measured values are in good agreement with our predictions, suggesting that the values we have used to model the cable are sufficiently accurate, and could therefore be used to predict the performance of ribbon cables using other cladding materials, so long as the conductivity of the cladding is reasonably well known. As part of our analysis, we consider the likely variation in thermal conductivity values for C51000 phosphor bronze caused by legitimate variations in composition.

Keywords: Superconducting cables (A); Thermal conductivity (C); Instrumentation (D); SQUID systems (F)

1 Introduction

Woven ribbon cables [1] are used at millikelvin temperatures in many large cryogenic instruments. Heat transmitted down the cables is often minimised by using niobium-titanium (NbTi) wire, which is superconducting at temperatures below 10 K. It is practically impossible to solder to NbTi, and thus the wire is generally clad with an alloy which is more amenable to soldering. This alloy is commonly constantan or a similar copper nickel alloy. However, such alloys are somewhat magnetic, and there is the potential for them to cause magnetic interference with SQUIDs where these are used in readout circuitry. Niobium titanium wire is available with copper cladding. Copper is non-magnetic, but it has a high thermal conductivity and must be removed over some part of the wire length. This is possible but not easy to achieve with woven ribbon cables. An alternative non-magnetic, but low conductivity, cladding material is phosphor bronze.

While phosphor bronze is a reasonably common material for cryogenic wiring, the use of phosphor bronze cladding on superconducting wire is not usual, and we are unaware of any information on the performance of such cables. Furthermore, the thermal conductivity of the niobium-titanium and the weave material is not well known. We present thermal conductance measurements of a ribbon cable made up in this way, intended for use in the SCUBA-2 astronomical instrument [2] at temperatures below 1 K. While we have not measured the conductivity of the components of the wire individually, the measurements should be of some use in predicting the conductance of similar cables using more common cladding materials since even this is not well known.
3 Measurements

It is difficult to measure the thermal conductance of a single length of a non-rigid good insulator, since mechanical support is required and the conductance of this support will be measured in parallel with the sample. We therefore supported the wire at the ends and applied heat in the centre, thus measuring the conductance from the centre to each end in parallel. The experimental configuration is modified from a design we have successfully previously used to measure the conductance of Kevlar® at millikelvin temperatures [3]. The layout is shown in Fig. 2. The ribbon cable was supported at both ends by a copper mount; one end of this was mounted onto a copper block attached to the mixing chamber of a dilution refrigerator. A radiation shield at mixing chamber temperature surrounded the sample. Thermal contact was made to the ribbon cable at both ends by sandwiching it between the mount and a copper block; 50 µm thick copper foil was wrapped around the cable to improve thermal contact. The copper block was bolted to the mount using nylon screws; these have significantly greater thermal contraction than copper, and thus the contact improves upon cooling. At the centre, the cable was sandwiched between two more copper blocks arranged in a similar manner. The centre copper block carried a NiCr heater and a thermometer, and the outer block carried a thermometer. The thermometers were both RuO$_2$ devices; the calibration method has been described previously [4]. The two lengths of cable across which the measurements were made were both 30 ± 0.1 mm.

To make measurements, the mixing chamber was held at a constant temperature and the equilibrium temperature of the centre copper block measured as a function of applied heater power. Measurements were made at two mixing chamber temperatures (100 and 200 mK); the two measurements were in good agreement with each other.

There are three main contributions to the relative error in the conductance $G(T)$:

1) The power supplied to the sample: we estimate that the relative error is of the order of about 0.1%;
2) The measurement of the geometry of the wires; this is estimated to be about 4%;
3) The uncertainty in the temperature due to the accuracy of the thermometers. A conservative value is 1%.

Taking into account these contributions, the relative error in conductance is about 5%.

4 Results and analysis

The results are shown in Fig. 3. The conductance was obtained by differentiating the applied power as a function of heater block temperature; the conductance for a unit length of the ribbon cable is shown in Fig. 4. This can be represented by the expression

$$G = 3.11 \times 10^{-8}T^{1.19},$$

(1)
where T is temperature; this is shown as the solid line in Fig. 4. A possible source of systematic error in the measurements would be a significant thermal resistance between the copper blocks and the ribbon cable. We believe based on previous measurements that the mounting scheme we have used provides a contact resistance which is sufficiently small to be neglected. The results suggest that this is indeed the case; the thermal conductance at such a contact is expected on both theoretical and experimental grounds to have a temperature dependence which is not well understood. As a reasonable approximation, giving a conductivity of

$$\kappa_{\text{Kevlar}} = 3.8 \times 10^{-3} (T/K)^{1.95} \text{Wm}^{-1}\text{K}^{-1};$$

earlier measurements over the same temperature range [6] were in good agreement.

However, at room temperature we have measured [7] a conductivity of $4 \text{ Wm}^{-1}\text{K}^{-1}$ for Kevlar; this is much higher than the conductivity of Nomex [8], which is around $0.3 \text{ Wm}^{-1}\text{K}^{-1}$, suggesting that Kevlar may not have a similar conductivity to Nomex. Nomex fibre does have a similar room temperature conductivity to nylon [8], another polyamide (but not an aramid), and therefore the conductivity of nylon at millikelvin temperatures may be a more suitable substitute. There are various measurements in the literature on the thermal conductivity of nylon below 1 K, most of which are in reasonably good agreement. An upper limit to the various measurements (which is close to the values in the well-known paper by Locatelli et al. [9]) is given by

$$\kappa_{\text{nylon}} = 2.6 \times 10^{-3} (T/K)^{1.78} \text{Wm}^{-1}\text{K}^{-1};$$

this is slightly lower than the values above for Kevlar at cryogenic temperatures. Since the conductivities of nylon and Kevlar are similar at millikelvin temperatures, it makes little difference which we choose; we have chosen the Kevlar values.

For the alloy of phosphor bronze used (C51000), we are aware of only one set of thermal conductivity measurements at cryogenic temperatures [10]. Furthermore, there is known to be considerable variation in conductivity between different samples of this material (even at room temperature), since the permissible ranges in the amount of tin and phosphorus present are quite large. Measurements at room temperature from various sources were considered in Ref. [12] and used to generate an equation for the room temperature conductivity as a function of tin and phosphorus content. For the composition ranges allowed for C51000, this predicts a rather large range ($44 - 92 \text{ Wm}^{-1}\text{K}^{-1}$) for room temperature conductivity. The lower limit corresponds to the worst case of maximum phosphorus and tin content and is perhaps unlikely. Measurements are presented in Ref. [13] for the thermal conductivity of phosphor bronzes with a range of compositions from around 15 K to room temperature. The room temperature values are generally around 20% higher than the equation from Ref. [12] would suggest, and in particular show less reduction in conductivity with phosphorus content than seen in the measurements used in Ref. [12]. Generating a new equation for room temperature conductivity by including data from both Refs [12] and [13] gives a room temperature range for C51000 of $57 - 92 \text{ Wm}^{-1}\text{K}^{-1}$; the two samples measured in Ref. [13] with composition within the specifications for C51000 fall into this range. However, to be conservative, for our analysis we have used the first and larger range given above.

Having obtained a range of values at room temperature, we need to convert this to a range at millikelvin temperatures. First we consider the conductivity at 4 K, since this is the lowest tem-

In this paper, good agreement was shown with earlier measurements [11] on an alloy with similar composition to C51000 (the phosphorus content was slightly higher than permitted by the C51000 specifications).
perature that we have data for. The measurements in Ref. [10]
were made from 4 K to room temperature; at room tempera-
ture they are close to the upper limit. To obtain a lower limit
for C51000 at 4 K, we assume that the ratio of conductivities at
4 K for two different samples are the same as at room tempera-
ture. While this is in general not true for a metal, it should be
a good approximation for such a strongly alloyed material as this.
The validity of this approximation is supported by the use of an
equation [14] derived to predict the conductivity of pure copper
as a function of temperature for different purities. While in-
tended for use only with pure copper, it has been shown to also
apply well to dilute copper alloys such as beryllium copper [15],
and it also fits the data from Ref. [10] reasonably well.

The next problem is that we do not know the temperature
variation below 4 K. Above 4 K, the conductivity varies as $T^{-1.2}$.
The conductivity of a metal due to electrons is expected to vary
linearly with temperature; the fact that the exponent is greater
than 1 is believed to be due to a significant contribution from
conduction through the lattice. In a metal, lattice conduction
is expected to vary below 4 K approximately as T_1, and there-
therefore will become much smaller than the electronic conductiv-
ity. While this is in general not true for a metal, it should be a
good approximation for such a strongly alloyed material as this.

It can be seen from Fig. 5 that the measured values for the rib-
bon cable conductance lie within the range of predicted values.
Since the contribution from the phosphor-bronze dominates, the
fact that we have represented the Nb-Ti and Nomex components
by a single value rather than a range has little effect on the range
of values for the total predicted conductance; a difference of
a factor of two would have little effect on the overall conduc-
tance. Given the large uncertainty in the conductivity of all the
components, the agreement may be to some extent fortuitous.
However, it suggests that the predictions are reasonably accu-
rate. Therefore it should be possible to predict the performance
of ribbon cables using other wire and cladding materials with
some confidence. In particular, it suggests that the conductance
through the Nomex (a poorly known quantity) is small.

5 Conclusions

We have measured the conductance of a sample of woven
Nomex ribbon cable containing phosphor-bronze clad niobium-
titanium wire. Such a cable has the advantage that it does not
contain any magnetic materials, unlike cables employing the
more usual monel or constantan cladding. While the thermal
conductivity of the different components of the cable is not well
known, we have predicted a range of likely values for the con-
ductance. The measured results lie within this range, suggesting
that the values we have chosen are reasonably accurate, and thus
can be used to predict the conductance of ribbon cables using
other wiring materials.

and performance of the SCUBA-2 instrument 1-K and mK systems.
Cryogenics 2009;49:504.
[3] Ventura G, Martelli V. Very low temperature thermal conduc-
[4] Woodcraft AL, Martelli V, Ventura G. Thermal conductivity of
Tecamax® SRP from millikelvin temperatures to room tempera-
[5] Olson JR. Thermal conductivity of some common cryostat mate-
rials between 0.05 and 2 K. Cryogenics 1993:33:729.
[7] Ventura G, Martelli V. Thermal conductivity of Kevlar 49 be-
cessed 2010/13/01.
[9] Locatelli M, Arnaud D, Routin M. Thermal conductivity of some
Cryogenic Engineering, available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090032058
_20090032566.pdf.
[11] Zavaritskii NV, Zeldovich AG. Thermal conductivity of techni-
1:1970.
[12] Simon NJ, Drexler ES, Reed RP. Properties of copper and copper
alloys at cryogenic temperatures. NIST Monograph 177, 1992.
resistivity and thermal conductivity of phosphor bronze. Journal
of the Japan Copper and Brass Research Association 2000;39:197
(in Japanese).
[14] Hust JG, Lankford AB. Thermal conductivity of aluminum, copper,
iron and tungsten for temperatures from 1 K to the melting
NBSIR 84-3007.
at low temperatures? In Y Takano, SP Hershfield, SH Hill,
PJ Hirschfeld, AM Goldman, editors, Low Temperature Physics:
24th International Conference on Low Temperature Physics -
LT24, volume CP850. American Institute of Physics, 2006; pages
1691–1692.