Instrumentation for sub-mm astronomy

Adam Woodcraft http://woodcraft.lowtemp.org SUPA, University of Edinburgh

Science & Technology Facilities Council UK Astronomy Technology Centre

Technology for Experimental and Observational Physics in Scotland

Scottish Universities Physics Alliance

SUPA

Science & Technology Facilities Council UK Astronomy Technology Centre

Introduction

Sub-mm astronomy

Science & Technology Facilities Council UK Astronomy Technology Centre

Astronomy at sub-mm wavelengths

Between infrared and millimetre No strict definition: usually from \sim 200 µm to \sim few mm

CSO and JCMT, Mauna Kea, Hawaii

Why do sub-mm astronomy? Science & Technology Facilities Council UK Astronomy Technology Centre

It lets us see cold things - peak in a 10 K blackbody is at 300 μm

Cold things are interesting: usually objects in formation (galaxies, stars, planets...)

• Sub-mm emission usually "optically thin"; so we see the interior rather than just the surface of objects

Example: sub-mm (850 µm) contours overlaid (SCUBA)

Science & Technology Facilities Council UK Astronomy Technology Centre

Dominant detector type for photometry (as opposed to spectroscopy) is the bolometer

5

Science & Technology Facilities Council UK Astronomy Technology Centre

Semiconductor bolometers

The first bolometer

science & Technology Facilities Council UK Astronomy Technology Centre

Bolometer invented by S. P. Langley in 1880 for infra-red astronomy (and luminous insects)

) Science & Technology Facilities Council UK Astronomy Technology Centre

81 years later, F. Low developed the cryogenic (4 K) bolometer using doped germanium as the thermistor

Low temperature operation:

- Reduces blackbody background radiation
- Increases sensitivity:
 - heat capacity is reduced
 - doped semiconductors can have very large dR/dT

The original application was not astronomy, but soon adopted (along with the inventor) for IR astronomy

Science & Technology Facilities Council UK Astronomy Technology Centre

Now replaced by photodetectors in IR, but the detector of choice for photometry in the sub-mm:

To get sufficiently good performance, operate at 300 mK or lower

- Makes instruments complex (and expensive)
- Much lower than needed in most areas of astronomy

) Science & Technology Facilities Council UK Astronomy Technology Centre

Bolometers are broad-band devices: they respond equally to all absorbed wavelengths

- Have to filter out unwanted wavelengths
- Metal mesh filters can be produced with precisely defined bandpasses

For high resolution spectroscopy, astronomers use coherent (heterodyne) systems, as in radio astronomy

- Outside the scope of this review
- Also operate at low temperatures and challenging to build

Science & Technology Facilities Council UK Astronomy Technology Centre

Unlike at optical and infra-red wavelengths, historically few commercial and military applications in sub-mm

Development largely in universities and government labs rather than industry

Cost \$2000/pixel c.f. \$0.12 for infrared, \$0.01 for optical

Science & Technology Facilities Council UK Astronomy Technology Centre

Composite bolometers introduced in 1970s

- Reducing thermal conductance increases sensitivity
- But also increases time constant
- Reduce again by reducing heat capacity
- This is the main reason for such low temperatures
- Composite bolometer reduces heat capacity further by separating absorber and thermometer

Science & Technology Facilities Council UK Astronomy Technology Centre

Early instruments contained a single pixel

UKT14 (ROE, Edinburgh)

Bolometer arrays

Science & Technology Facilities Council UK Astronomy Technology Centre

Arrays appeared in the 1980's, making better use of telescopes

SCUBA (ROE, Edinburgh)

SCUBA

Largest of the early arrays

- 131 pixels
- Composite bolometers (sapphire substrate, brass wire thermal link)
- Hand assembled from individual pixels
- Arrays (and in particular SCUBA) revolutionised the field

SCUBA individual pixel

Technology for Experimental and

Observational Physics in Scotland

NTD germanium

Sensitive and uniform behaviour requires uniform doping

- SCUBA and other modern germanium bolometers use Neutron Transmutation Doping (NTD)
- Converts ⁷⁰Ge to ⁷¹Ga (acceptor) and 74Ge to 75As (donor)
- Since germanium isotopes are uniformly distributed, result is uniform doping and simple behaviour

Early instruments

Science & Technology Facilities Council UK Astronomy Technology Centre

1997-

.3K

Number of pixels

Operating temperature

Modern bolometers built by micromachining

- Silicon nitride deposited on silicon wafer
- Silicon etched to form SiN membranes
- Form absorber and supports
- Metallisation defines absorber and weak thermal link
- "Spiderweb" shape reduces heat capacity and exposure to ionizing radiation

Science & Technology Facilities Council

UK Astronomy Technology Centre

Beryllium copper heat sink

JPL spiderweb bolometers

Scottish Universities Physics Alliance

Either break out into individual detectors, or leave to form an array

Spiderweb array wafer (JPL)

But still have to stick germanium chips individually on each pixel

Science & Technology Facilities Council UK Astronomy Technology Centre

Alternative: make thermistors from the silicon itself by ion implantation

• Initial problems with excess noise, but recently discovered it could be removed by using thicker implants

SHARC-II (GSFC/Caltech)

Science & Technology Facilities Council UK Astronomy Technology Centre

Difficult to multiplex germanium or silicon bolometers without introducing too much noise

Limits array sizes

• "CCD-like" CMOS multiplexed silicon arrays have been produced using very high thermistor resistances to increase signals to partially overcome multiplexer noise

Facility instruments on telescopes now

Telescope	Instrument	Wavelength(s)	Pixels	5 Technology	Temperature	Status
APEX	LABOCA	$870~\mu{\rm m}$	295	NTD Ge	$300 \mathrm{mK}$	
ASTE	AzTEC	1.1 or 2.1 $\mu {\rm m}$	144	NTD Ge	$300 \mathrm{mK}$	
CSO	SHARC-II	350, 450 or 850 $\mu{\rm m}$	384	Ion implanted Si	300 mK	
CSO	Bolocam	$1.1~{\rm or}~2.1~{\rm mm}$	119	NTD Ge	$300 \mathrm{mK}$	
GBT	MUSTANG	$3 \mathrm{mm}$	64	TES	$300 \mathrm{mK}$	In commissioning
Herschel	PACS	60 - $210~\mu{\rm m}$	2560	Ion implanted Si	300 mK	Awaiting launch (2009)
Herschel	SPIRE	200 - 670 $\mu {\rm m}$	326	NTD Ge	$300 \mathrm{mK}$	Awaiting launch (2009)
IRAM 30 m	MAMBO-2	$1.2 \mathrm{mm}$	117	NTD Ge	$300 \mathrm{mK}$	
JCMT	SCUBA-2	450 and 850 $\mu {\rm m}$	10240	TES	100 mK	In commissioning

Doesn't include dedicated PI instruments or CMB instruments

NTD germanium arrays

Science & Technology Facilities Council UK Astronomy Technology Centre

AzTEC (JPL) 144 pixels

LABOCA (MPIfR) 295 pixels

Facility instruments on telescopes now

_	Telescope	Instrument	Wavelength(s)	Pixels	Technology	Temperature	Status
	APEX	LABOCA	$870~\mu{\rm m}$	295	NTD Ge	$300 \mathrm{~mK}$	
	ASTE	AzTEC	1.1 or 2.1 $\mu {\rm m}$	144	NTD Ge	$300 \mathrm{~mK}$	
	CSO	SHARC-II	350, 450 or 850 $\mu\mathrm{m}$	384 🤇	Ion implanted Si	300 mK	
	CSO	Bolocam	$1.1~{\rm or}~2.1~{\rm mm}$	119	NTD Ge	$300 \mathrm{~mK}$	
	GBT	MUSTANG	$3 \mathrm{mm}$	64	TES	$300 \mathrm{~mK}$	In commissioning
	Herschel	PACS	60 - 210 μm	2560	Ion implanted Si	300 mK	Awaiting launch (2009)
	Herschel	SPIRE	200 - 670 $\mu \mathrm{m}$	326	NTD Ge	$300 \mathrm{~mK}$	Awaiting launch (2009)
]	IRAM 30 m	MAMBO-2	$1.2 \mathrm{mm}$	117	NTD Ge	$300 \mathrm{~mK}$	
	JCMT	SCUBA-2	450 and 850 $\mu{\rm m}$	10240	TES	$100 \mathrm{~mK}$	In commissioning

Doesn't include dedicated PI instruments or CMB instruments

Silicon arrays

SHARC-II (GSFC/Caltech) 384 pixels

PACS arrays (CEA/LETI) 2560 pixels

Science & Technology Facilities Council UK Astronomy Technology Centre

Superconducting bolometers

27

Superconducting bolometers 🛎

Even without multiplexing, fundamental noise limits reached Solution: superconductors (transition edge sensor; TES)

- Very large dR/dT at transition
- But have to keep on transition

 Key to use in astronomy was realisation (K. Irwin, 1995) that voltage bias keeps them automatically on transition

Science & Te

llities council v Technology Centre

Technology for Experimental and Observational Physics in Scotland Has taken ~ 10 years to find and eliminate excess noise sources to make TES arrays practical

Advantages:

- Low fundamental noise limits
- Can be constructed on an array scale by thin-film deposition and lithography
- Can be multiplexed with minimal noise penalty by superconducting electronics

New generation of instruments using TES arrays now in construction and on telescopes

10

SCUBA-2

Scottish Universities Physics Alliance

- Eight arrays; 1280 pixels each
- Constructed from detector and multiplexer silicon wafer, indium bump bonded together like an infrared array

SCUBA-2 sub-array (SCUBA array inset)

Technology for Experimental and

Observational Physics in Scotland

Facility instruments on telescopes now

	Telescope	Instrument	Wavelength(s)	Pixels	Technology	Temperature	Status
	APEX	LABOCA	$870~\mu{\rm m}$	295	NTD Ge	$300 \mathrm{mK}$	
	ASTE	AzTEC	1.1 or 2.1 $\mu{\rm m}$	144	NTD Ge	$300 \mathrm{mK}$	
	CSO	SHARC-II	350, 450 or 850 $\mu{\rm m}$	384	Ion implanted Si	300 mK	
	CSO	Bolocam	$1.1~{\rm or}~2.1~{\rm mm}$	119	NTD Ge	$300 \mathrm{mK}$	
	GBT	MUSTANG	3 mm	64	TES	300 mK	In commissioning
	Herschel	PACS	60 - $210~\mu{\rm m}$	2560	Ion implanted Si	300 mK	Awaiting launch (2009)
	Herschel	SPIRE	200 - 670 $\mu {\rm m}$	326	NTD Ge	$300 \mathrm{mK}$	Awaiting launch (2009)
]	RAM 30 m	MAMBO-2	$1.2 \mathrm{~mm}$	117	NTD Ge	$300 \mathrm{mK}$	
	JCMT	SCUBA-2	450 and 850 $\mu {\rm m}$	10240	TES	$100 \mathrm{mK}$	In commissioning

Doesn't include dedicated PI instruments or CMB instruments

Facility instruments

) Science & Technology Facilities Council UK Astronomy Technology Centre

SCUBA-2 (1280 pixels installed here)

MUSTANG (64 pixels)

- Multiplexer fabrication is complex, especially for large arrays
- Increasing array sizes further will be very difficult
- Too much power sends detector above transition; no response
 - Worrying for a space mission where background unknown, and can't fix problems
 - Semiconductor bolometers work in high background with reduced sensitivity

Science & Technology Facilities Council UK Astronomy Technology Centre

The future

34

KIDs

Alternative technology: Kinetic Inductance Device

- Use superconductor below transition
- Radiation breaks Cooper pairs
 - like electron-hole pair creation in semiconductor, but with smaller energy gap
- Detect by change in AC inductance
- Advantage: can read out many devices with single coax
 - Simple detector fabrication
 - No complex multiplexer to make
- Still need ultra low temperatures though
- Looks very promising

Science & Technology Facilities Council

UK Astronomy Technology Centre

Prototype KID camera (Caltech/JPL)

STJs

Superconducting tunnel junctions use similar principle

- Pair breaking detected by current flowing through tunnel junction which blocks Cooper pairs
- Like semiconductor photoconductor
- BUT: currently no practical way to multiplex

STJ array (ESTEC/ESA)

Science & Technology Facilities Council UK Astronomy Technology Centre

Hot-spot superconducting detectors

Antenna coupling

science & Technology Facilities Council UK Astronomy Technology Centre

Another area being developed is antenna coupled detectors

- Radiation detected by planar antenna
- Transmitted to detector by waveguide
- Can filter wavelengths *electrically* rather than optically
- One antenna can feed several pixels for different wavelengths

X and gamma detection

Science & Technology Facilities Council UK Astronomy Technology Centre

All these technologies can also be used to detect X and gamma rays

- Detect energy pulse from individual photons
- Therefore have energy/wavelength resolution
- Appealing for X-ray astronomy (and industrial applications)
 - High resolution and efficiency justify complication of cooling to under 100 mK
- Useful since can share development with sub-mm community

Optical/IR

They can even be operated at optical/IR wavelengths

- Detect heat from absorption of single photon, and use to determine wavelength!
- Unique combination of spatial and spectral measurement along with accurate timing information
- Used to measure rapidly varying spectrum e.g. Crab Nebula

Optical TES array (Stanford)

Science & Technology Facilities Council UK Astronomy Technology Centre

Conclusions

41

Conclusions

The next few years will be very interesting:

- Many new instruments coming on line
- Not clear which technologies will dominate for the next generation of instruments

One current goal is to produce detectors for a space mission with a cold (5 K) mirror

- Will have to be considerably more sensitive than current detectors
- Different groups developing TES, KID, CMOS multiplexed silicon arrays and many more...

